

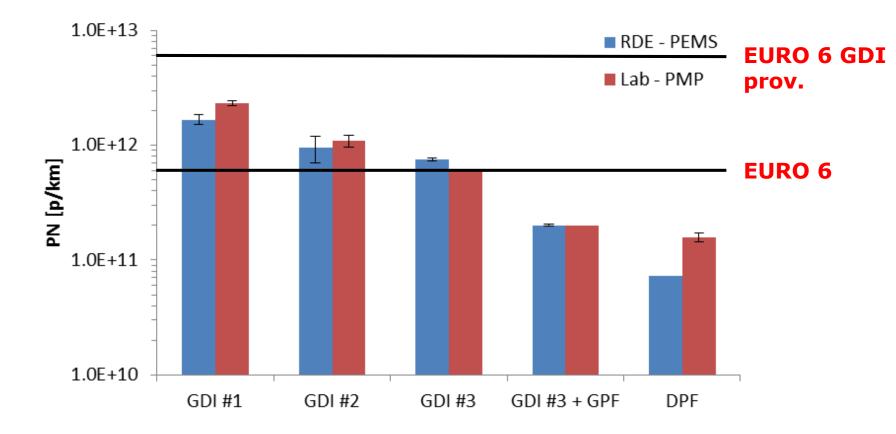
The 3rd RDE legislation

4th July 2016

European Commission – DG-GROW

Issues for RDE 3

- > PN-PEMS
- Cold start
- > Hybrids, Regeneration and Other issues

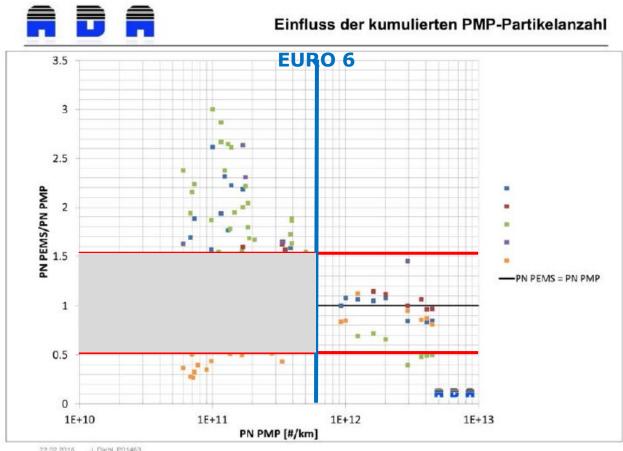

PN at RDE

- Already included in **Regulation (EC) 459/2012** in footnote of table with EURO 6 limits:
- "(3) Until three years after the dates specified in Article 10(4) and (5) for new type approvals and new vehicles respectively, a particle number emission limit of 6,0 × 10¹² #/km shall apply to Euro 6 PI direct injection vehicles upon the choice of the manufacturer. Until those dates at the latest a type approval test method ensuring the *effective limitation of the number of particles emitted by vehicles under real driving conditions* shall be implemented."
- Dates are set already in legislation as 1 Sept. 2017 for new types and 1 Sept 2018 for all vehicles
- This is currently under review by the legal officers

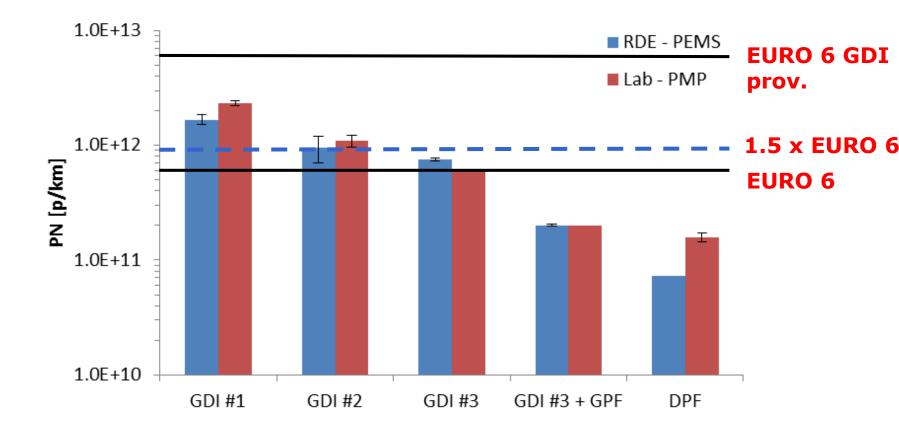
Current situation with PN (PMP vc RDE)

PN-PEMS Measurement uncertainty

PN-PEMS vs	Theory	1 lab – many cars**	1 car – many labs**
PMP_TP	<25%	<35%	<40%
PMP_CVS	<50%*	<50%	<55%
TP vs CVS (PMP)	<30%	<40%	<35%


* Assuming 25% effect of sampling location (losses + exhaust flow uncertainties)
** Based on worst case of two reference systems (DC and CPC based)

Numbers are the worst case for all cases examined (i.e. they are max values) close to the EURO 6 PN limit


From ACEA data

22.02.2016 J. Diehl, P01463

Current situation with PN (PMP vs. RDE)

Current EC Proposal for PEMS-PN

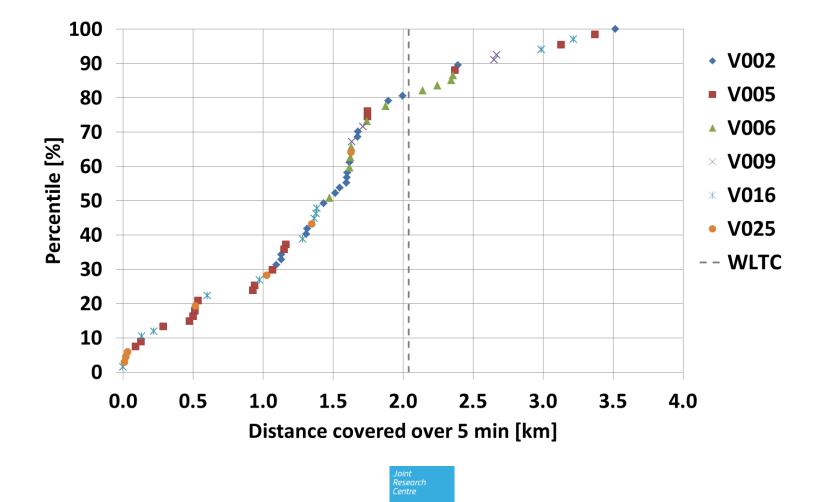
- Inclusion of PN for RDE is technically feasible
- Equipment fulfil the technical specifications and have shown good behaviour during extensive testing
- Since technology exists (GPF) that allows even GDIs to be significantly lower than the EURO 6 limits, only the measurement uncertainty may be allowed
- Theory and the most extensive set of data available (JRC interlab and own tests) show that the uncertainty of measuring at the EURO 6 limit is at maximum 50% (for good equipment even less)
- **CF**_{PN}: 1.5 in 2017 for new types, in 2018 for all vehicles
- With a review clause since equipment are bound to improve

COLD START

The issue of cold start contains inherently two issues:

- Engine start (i.e. inclusion of first minutes of test into the evaluation)
- Start of the vehicle in cold atmospheric conditions

<u>Currently Cold start emissions are recorded in RDE but</u> <u>excluded from calculations</u>


- Absence of vehicle conditioning
- Low repeatability and reproducibility of test conditions may lead to high variability of warm-up durations and cold start emissions
- Cold start contributes little to the overall emissions of comparatively long (up to 2h) RDE tests

Current Boundary conditions

• Currently potentially large variability of driving in the first 5 min

RDE 3 Boundary conditions

Adaptations are needed for a robust assessment of cold-start emissions:

- **Soak** of vehicle overnight at ambient T
 - Issue to solve with PEMS equipment (better isolation?, overnight inside?)
- Mandatory start of trips with urban driving (revision of Point 6.2)
- Limiting idling at test start (revision of Point 7.6)

Application of RDE urban boundaries to cold-start:

- Cold-start driving at average speed 15-40 km/h
- v*a+ and RPA boundaries of Appendix 7a

Approaches

• Approach 0:Cold-start as part of RDE urban evaluation

• Approach 1:
$$M_{urban} \left[\frac{mg}{km} \right] = \frac{m_{cold}[mg] + m_{hot}[mg]}{d_{urban}[km]} = \frac{m_{cold}[mg]}{d_{urban}[km]} + \frac{m_{hot}[mg]}{d_{urban}[km]}$$

 $M_{urban} \left[\frac{mg}{km} \right] \approx \frac{m_{cold}[mg]}{d_{urban}[km]} + RDE_{hot,urban} \left[\frac{mg}{km} \right]$

• Approach 2a:
$$M_{urban}\left[\frac{mg}{km}\right] = w \cdot M_{cold}\left[\frac{mg}{km}\right] + (1 - w) \cdot RDE_{hot,urban}\left[\frac{mg}{km}\right]$$

with $w = \frac{d_{cold}[km]}{d_{urban}[km]}$

• Approach 2b: $M_{urban}\left[\frac{mg}{km}\right] = w \cdot M_{cold}\left[\frac{mg}{km}\right] + (1-w) \cdot RDE_{hot,urban}\left[\frac{mg}{km}\right]$ with $w = \frac{d_{cold} = 2km}{d_{urban}[km]}$

• T&E proposal of repeat of urban drive at end of RDE test

NOx	JRC data at 15-40 km/h (6 tests)*
Approach 0 (CS part in normal RDE evaluation)	7 ± 11%
Approach 2a (d _{urban} =RDE _{urban})	9 ± 4%
Approach 2a (d _{urban} =23km)	15 ± 8%
Approach 2a (d _{urban} =8km)	45 ± 22%

* Type of vehicles, T ranges (see next slide)

Cold start for NOx

Complementary information on cold-start analysis

- A total of 9 tests are used for the JRC cold-start analysis
- The six tests with an average cold-start speed of 15-40 km/h are marked in bold

Test ID	Vehicle information	Ambient temperature in °C
V006_CI_2	Light-commercial vehicle, Diesel, SCR, DPF	14
V006_CI_3	Light-commercial vehicle, Diesel, SCR, DPF	16
V006_CI_4	Light-commercial vehicle, Diesel, SCR, DPF	13
V002_CI_2	Passenger car, Diesel, SCR, DPF	8
V002_CI_3	Passenger car, Diesel, SCR, DPF	8
V002_CI_4	Passenger car, Diesel, SCR, DPF	9
V002_CI_5	Passenger car, Diesel, SCR, DPF	4
V005_CI_1	Passenger car, Diesel, De-NOx, DPF	7
V005_CI_2	Passenger car, Diesel, De-NOx, DPF	17

PN	JRC RDE data (Golden Vehicle, GDI w/o GPF, av. 5 tests) CPC based PN-PEMS	JRC RDE data (Golden Vehicle, GDI w/o GPF, av. 9 tests) DC based PN-PEMS
Approach 0 (CS part in normal RDE evaluation)	7% (+/-7 %)	3% (+/-3 %)
Approach 2a (d _{urban} =RDE _{urban})	22% (+/-14%)	15% (+/-10%)
Approach 2a (d _{urban} =23km)	36% (+/-24%)	22% (+/-16%)
Approach 2a (d _{urban} =8km)	105% (+/-70%)	63% (+/-46%)

Joint Research

* Type of vehicles, T ranges

Cold start for PN

Complementary information on cold-start analysis

- A total of 10 tests are used for the JRC cold-start analysis all with an average cold-start speed of 15-40 km/h
- 5 of these test for the CPC based PN-PEMS and 9 for the DC based PN-PEMS

		Ambient temperature
Test ID	Vehicle information	in °C
20150916_road_03_JRC	Passenger car, GDI	17
20151022_road_01_HON	Passenger car, GDI	12
20151023_road_02_HON	Passenger car, GDI	13
20151120_road_03_VOL	Passenger car, GDI	4
20151123_road_04_VOL	Passenger car, GDI	3
20151208_road_04_TUV	Passenger car, GDI	12
20151218_road_02_JRC	Passenger car, GDI	6
20151221_road_04_JRC	Passenger car, GDI	10
20160112_road_01_JRC	Passenger car, GDI	12
20160113_road_02_JRC	Passenger car, GDI	12

Engine Start Inclusion:

- Boundary Conditions to be included
- Approach 0: straight forward but not technically correct since we have under-sampling of the first min with EMROAD
- Approach 2A: Technically correct, but care needs to be taken to select the appropriate durban
- EC still to decide on the best approach
- Dates for inclusion into RDE are with 1st step

Ambient conditions are already present in current RDE:

- Moderate and extended RDE conditions (Point 5.2; Regulation 2016/427)
- Derogations apply until 5 years after Euro 6 dates

Ranges	In °C	Factor
Moderate temperature	0 to 30	1
<i>Derogation moderate temperature</i>	3 to 30	1
Extended temperature	-7 to <0 and >30 to 35	1.6
<i>Derogation extended</i> <i>temperature</i>	-2 to <3 and >30 to 35	1.6

NEXT STEPS

- We realise that the timing is ambitious both for finalising the legislation and for implementing it
- Vote in TCMV planned for mid-November
- Text needs to be ready by early September
- Realistically the new legislation should be published after the WLTP one, in spring 2017
- First implementation date for new types is already in September 2017!

THANK YOU FOR YOUR ATTENTION!

PLEASE DIRECT YOUR QUESTIONS TO PANAGIOTA.DILARA@EC.EUROPA.EU

