

# Where do Euro 6 cars stand?

Nick Molden 29 April 2015

#### Agenda



- Background and credentials
- Performance tracking programme
- Comparison to Real Driving Emissions
- Latest trends in NOx
- Context of fuel economy
- Data inventory and benchmarking
- Next steps

### Emissions Analytics' credentials



- Founded in 2011
- Headquartered in Winchester, with operations in London and Los Angeles
- 10 employees, currently expanding in EU
- Specialist in PEMS testing and data analysis
- Over 900 vehicles tested
- RDE-compatible testing conducted since 2011
- Expert in cycle design and testing strategies to meet multiple and complex objectives
- Works with OEMs, Tier 1 suppliers, fuel and chemical companies, regulators, consultancies, consumer media

#### **Benefits of PEMS**



- Real on-road testing using PEMS is a powerful research method
- Authentic and cost effective
- Works on all vehicle types
- No permanent vehicle modification required
- Flexible location
- High rate of data acquisition 1 Hertz
- Precision approaching laboratory levels



## Equipment (1)



- SEMTECH-DS and Ecostar-FEM
- Portable Emissions Measurement System connects to tailpipe
  - Captures emissions for CO<sub>2</sub>, CO, NO,
    NO<sub>2</sub>, total hydrocarbons
  - At 1 Hertz
  - Air temperature, pressure, humidity
  - GPS for speed and altitude
  - Engine data via CANBUS
- Fuel economy derived via carbon balance
- Ecostar weighs approximately 50kg including auxiliary batteries



## Equipment (2)



- Pegasor Mi2
- Real-time tailpipe concentrations
- No filter papers
- Particle mass and number
- Sub-23nm particles
- Flexible, economic, real-world data collection





#### PERFORMANCE TRACKING PROGRAMME

#### **Objectives**



- On-going, real-time performance monitoring programme
- Air quality, greenhouse gases, fuel economy
- Independent
- Authentic: production vehicles, public highway
- Create feedback loop into better engineering, regulation and purchase decisions
- To ensure beneficial outcomes are achieved

#### Activity



- 200-250 passenger cars tested per year in EU
  - Similar in US
- Testing primarily in London, but flexible location
- New, commercially available vehicles
- Typically 2,000km+ on odometer
- Fixed weight addition
- Proprietary route based on typical driving
- 2.5-3 hour test
- New programme for light commercial underway



#### **COMPARISON TO RDE**

#### Comparison with RDE



- Many similarities, some differences
  - RDE before RDE...
  - RDE-compatible
- Test ~50% longer in time
  - Economies of scale
- Town/rural/motorway defined by continuous route-segments
- Range of driving modes tested, but avoiding extended conditions
- Prescribed weight addition
- Separation of cold start and DPF regeneration
- Controlled use of air conditioning, no other auxiliary systems
- Maximum speed 110km/h



# LATEST NO<sub>x</sub> TRENDS

#### ICCT report







15 test vehicles in total (6 manufacturers), with different  $NO_x$  control technologies:

- 10 selective catalytic reduction (SCR)
- 4 exhaust gas recirculation (EGR)
- 1 lean NO<sub>v</sub> trap (LNT)

Average Euro 6 NO<sub>x</sub> conformity factors (ratio of on-road emissions to legal limits):

- all cars: 7.1
- best performer (Vehicle C, SCR): 1.0
- bad performer (Vehicle H, LNT): 24.3
- · worst performer (Vehicle L, SCR): 25.4



#### Euro 6 latest trends

- Early Euro 6 passenger cars exceeded regulatory levels by 7.1 times – ICCT
- Early evidence of gap closing, especially towards end of 2014
- Further analysis required
- Best performers meet standard
- SCR dominant solution
- Spread reducing, but still wide





#### **COPERT** study

- Joint project with Imperial College London
- February 2015
- 5 Euro 5/6 passenger cars
- Detailed comparison with COPERT v4.10 and v4.11 models
- To assess effectiveness for policy and planning
- Euro 5 to Euro 6 performance compared to regulated levels
- Analysis of fraction of NO<sub>x</sub> and NO<sub>2</sub>



## COPERT results - NO<sub>x</sub>

- COPERT better on average, but lacks resolution for road and model type
- Euro 6 significantly lower on average than Euro 5
- High inter-model NO<sub>x</sub> variability
- All vehicles above regulated level in both urban and extra-urban





Euro 6: A, B, C Euro 5: D, E



## COPERT results – NO<sub>2</sub>

- No consistent relationship between fNO<sub>2</sub> ratio and speed
- Variance between different models
- COPERT consistently underestimates primary NO<sub>2</sub> emissions in urban areas where public exposure is greatest
- Implies high primary fraction of NO<sub>2</sub>
  in urban areas, up to ~90%
- COPERT v4.11 assumes a ratio of 30% for Euro 6 diesel cars
- Danger of meeting NO<sub>x</sub> target but not solving air quality problem





#### **FUEL ECONOMY CONTEXT**

## Trends in fuel economy



- Gap between real-world and NEDC grows
- Combustion, aftertreatment and thermal management strategies introduces trade-offs between NO<sub>x</sub> and CO<sub>2</sub>
- Early evidence of a potential problem
- Although some mix effect with limited MY2015 sample





#### DATA INVENTORY AND BENCHMARKING

## By manufacturer





## Engine, powertrain, Euro stage



| Model Year | Diesel | Petrol | Total | Engine size class (litres) | Diesel | Petrol | Total |
|------------|--------|--------|-------|----------------------------|--------|--------|-------|
|            |        |        |       |                            |        |        |       |
| 2011       | 17     | 13     | 30    | 0-1                        | 0      | 8      | 8     |
| 2012       | 105    | 71     | 176   | 1-2                        | 128    | 165    | 293   |
| 2013       | 103    | 73     | 176   | 2-3                        | 183    | 46     | 229   |
| 2014       | 113    | 84     | 197   | 3-4                        | 44     | 18     | 62    |
| 2015       | 20     | 8      | 28    | 4-5                        | 3      | 7      | 10    |
| Total      | 358    | 249    | 607   | 5+                         | 0      | 5      | 5     |
|            |        |        |       | Total                      | 358    | 249    | 607   |

| Euro Stage | Diesel | Petrol | Total |
|------------|--------|--------|-------|
|            |        |        |       |
| Euro 5     | 307    | 214    | 521   |
| Euro 6     | 51     | 35     | 86    |
| Total      | 358    | 249    | 607   |

### **OEM** league table





## Segment/fuel ranking





#### Drill-down to individual datasets





#### Next steps



- Track performance of latest Euro 6 diesels for NO<sub>x</sub>
- Together with fuel economy and other technologies such as GDI
- Expand and develop scope of performance tracking programmes
  - More vehicles
  - Additional driving modes
  - Other emission types
- Make analysis available via live benchmarking product
- Provide data and expertise to support third part analysis



Nick Molden, Chief Executive Officer nick@emissionsanalytics.com

+44 (0) 20 7193 0489

+44 (0) 7765 105902