

European Motor Industry expectations towards Euro VI

AECC Technical Seminar

Brussels, 25th October 2007

Consultation on Euro VI

- ACEA supports the principles of better regulation endorsed in the conclusions of the CARS21 program.
- Commission must conduct a full and transparent impact assessment before deciding on a proposal for Euro VI.
- Public consultation:
 - No background information on the 4 scenarios:
 - Stakeholders unable to make a reasonable and rational comparison of the costs and the effects of the 4 proposed scenarios.
- Impact on fuel economy must be part of Euro VI policy considerations.

Influencing factors for Euro VI

- Political pressure to adopt Euro VI limits that are similar to US2010.
- Comparison with US standards should take into account the specific rules applied by the US-EPA:
 - i.e. units, procedures, rounding rules, flexibilities, deficiencies, emission-averaging banking & trading, NTE rules etc).
- US applies "Averaging, Banking & Trading" system & FEL:
 - upper limit (cap) for the FEL of 0.65g/kWh NOx and 0.03g/kWh PM;
 - credits gained in the years prior to a new emission standard;
 - many engines will be certified to NOx and PM FEL's higher than the numeric limit values of 0.3g/kWh and 0.02g/kWh;
 - likely NOx levels will range between 0.4g/kWh and 0.65g/kWh.

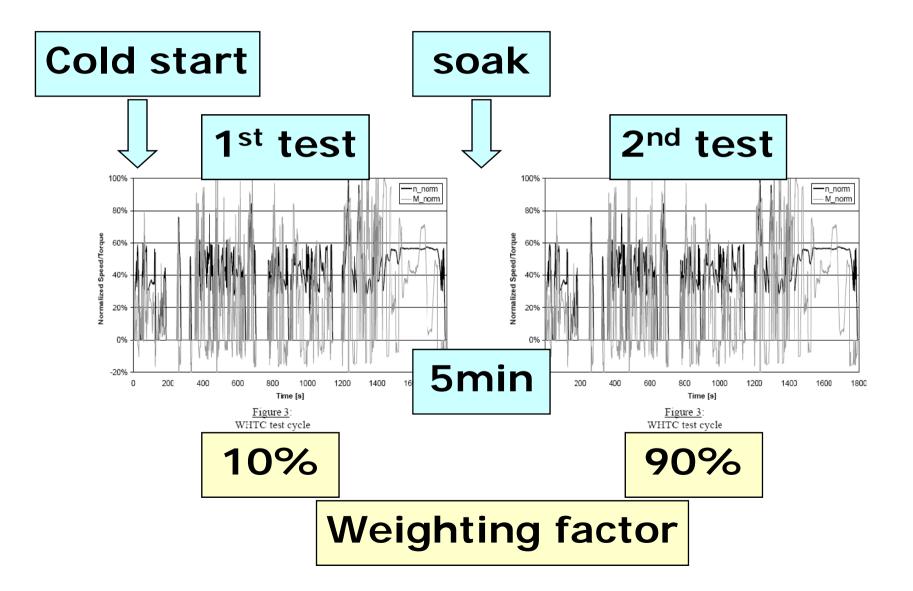
Influencing factors for Euro VI

- Scenarios A and D are broadly equivalent to US2010 in terms of the engine technology.
- Timing and introduction of standards:
 - Application of US standards can be spread over a number of years;
 - European limits apply to 100% production from a certain fixed date.

ACEA proposal on Euro VI

- A single Euro VI step that sets emission limits which are technically challenging and achievable with sufficient industry lead-time.
- Alignment of the Euro VI and US emission standards must be the final goal of European policy makers:
 - technical feasibility to be fully demonstrated;
 - will produce a large air quality benefit with very high costs.
- Euro VI should apply **no earlier than 36 months** after the date of adoption of the complete Euro VI package:
 - Euro VI in the timeframe:
 - 1st October 2013 for new types and,
 - 1st October 2014 for all new registrations and sales.

ACEA proposal on Euro VI


• Euro VI NOx and PM:

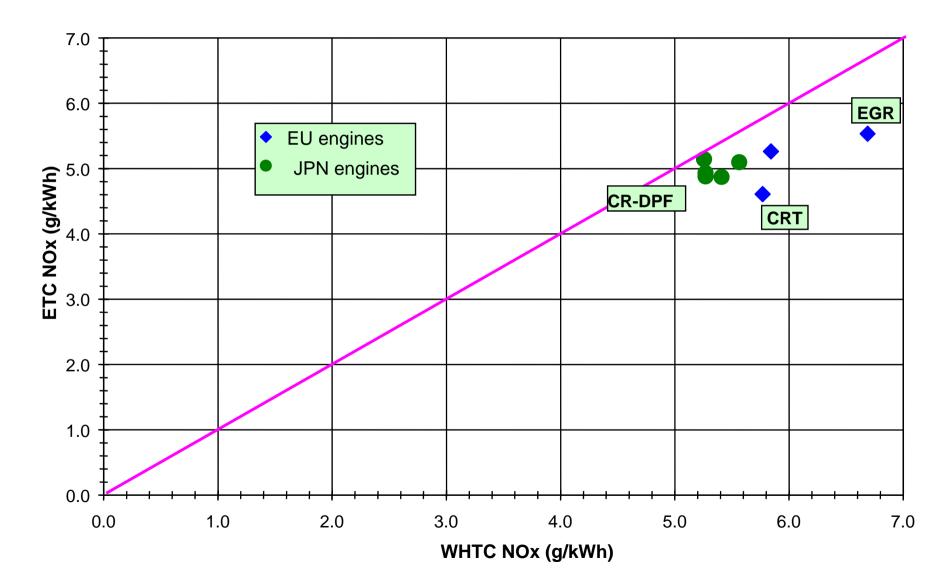
 Scenario 'A' (referred to the ETC), i.e. 0.4g/kWh NOx and 0.01 g/kWh PM.

• Test cycles:

- The WHDC cycle must be the basis for Euro VI:
 - UN-ECE Regulation No.49 to be completed;
- The Commission should adopt a Euro VI proposal this year on the basis of the ETC;
- The Commission must confirm its intention to introduce WHDC (UN-ECE Regulation No.49 version) through the comitology process;
- Regulation must establish the appropriate Euro VI WHDC-based emission limits on the basis of a well-established correlation between ETC and WHDC.

Approach

- Engine systems are optimised to comply with emission requirements while offering best performance and best fuel economy under conditions of use.
- Hence, engine maps might be shaped accordingly and it is very difficult to obtain a simple correlation between very different test cycles operating in different load/speed areas.
- This conclusion was already drawn in the report of the WHDC validation studies.



Approach

- Introduction of cold start hot soak warm start procedure in the WHTC:
 - New requirements added which have a major influence on the engine calibration and, by default, to any test cycle correlation;
 - For this reason, a simple back-to-back testing of current production engines on different test cycles is not meaningful.
- Correlation ETC-WHTC:
 - ACEA focused on current / future engine systems with emission levels better than Euro V;
 - Applied engine calibrations taking into account the additional requirements of cold and warm start emission controls.

ETC-WHTC hot pre-conditioning - initial situation

Studies of all

ETC ETC 1.7

> 1.7 0.14

0.19

1.02

1.02

0.18

0.39

3.5

1.57

0.18

0.18

A B

C D

Е

F

G

Н

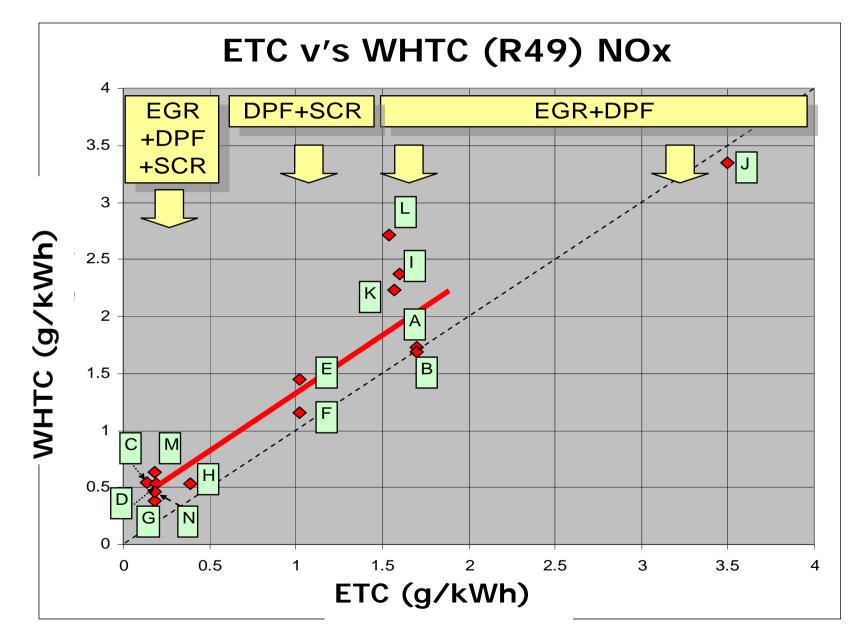
J K

L

M N

European OEM's

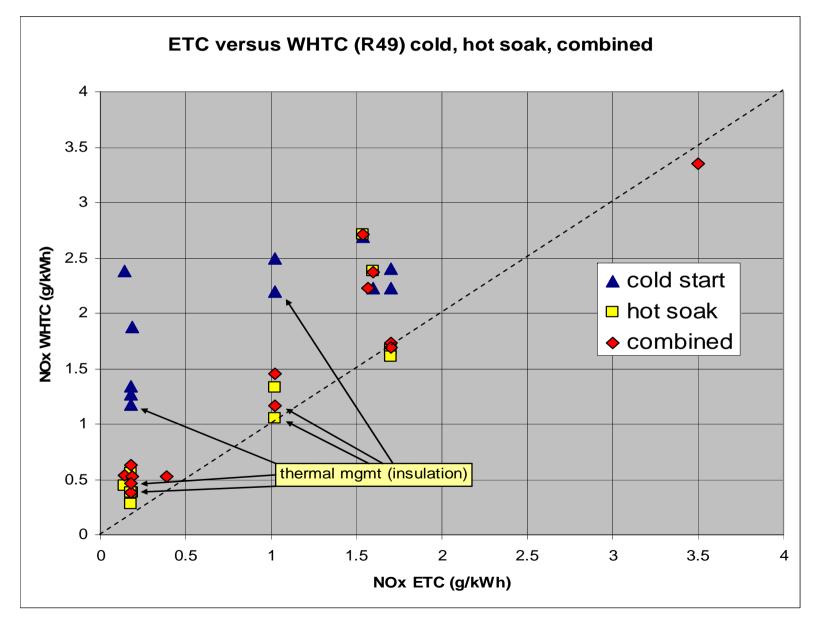
	At Iow	NOx-levels g/kWh
7		


		\downarrow						
WHTC				cylinder	displacement	max power	max torque	Technology
;	cold start	hot soak	combined	number	litre	kW	Nm	
	2.23	1.67	1.73	6	12.8	362	2237	EGR+DPF
	2.4	1.61	1.69	6	12.8	325	2237	EGR+DPF
ŀ	2.38	0.44	0.54	6	12.8	362	2237	EGR+DPF+SCR
)	1.88	0.38	0.53	6	12.8	325	2237	EGR+DPF+SCR
2	2.5	1.33	1.45	6	6	220	1050	DPF+SCR
2	2.2	1.05	1.16	6	6	220	1050	DPF+SCR+thermal
}	1.34	0.28	0.38	6	12.8	335	2237	EGR+DPF+SCR
)			0.53	6	12.8	335	2237	EGR+DPF+SCR
	2.23	2.38	2.37	6	12.8	335	2237	EGR+DPF
			3.35	6	12.8	335	2237	EGR
7			2.23	6	10.5	287	1900	EGR+DPF
ŀ	2.69	2.71	2.71	6	na	na	na	EGR
3	1.27	0.56	0.63	6	12.9	355	na	EGR+DPS+SCR
3	1.18	0.38	0.46	6	12.9	355	na	EGR+DPF+SCR thermal mgmt

With advanced

engine system

technologies

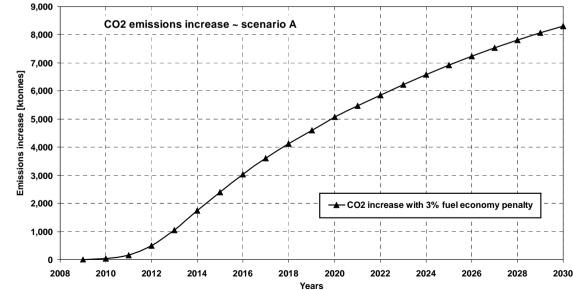

NOx correlation ETC-WHTC (R49)

 The data supports the conclusion that an additive factor (offset) of 0.3 g/kWh is applied as follows:

NOx $_{WHDC}$ = NOx $_{ETC}$ + 0.3 g/kWh

- Concerning PM, HC and CO it is proposed to apply a correlation factor of 1.0;
- These conclusions are only valid for the range of tested engine systems;
- Thermal management lowers both the WHTC-cold start and the hot soak test results but thermal management will not achieve a 1:1 correlation of the hot soak test with the ETC.

Individual results cold-hot weighted



	NOx limits modelled	NOx reduction in 2020	PM limits modelled	PM reduction in 2020	Cost	
LD diesel	65 mg/km	263 kT	2 mg/km	21.7 kT	€202 per vehicle	
HD diesel	1.4 g/kWh	125 kT	0.01 – 0.015 g/kWh	1.8 kT	€1,159 per vehicle	
	E reduction from road transport:	388 kT		26 kT	1.868 M€/year	
⁽¹⁾ Far lower than the ACEA costs for scenario 2 (NOx = 1.0 g/kWh) in the range $\in 2,250 - \notin 4,000$.						

Impact assessment

- No Commission impact analysis yet:
- ACEA's impact analysis shows the effect of Euro VI NOx and PM emission limits as per Scenario A will result in:
 - a reduction in NOx and PM of some 500kT and 3.25kT respectively by the year 2020;
 - a reduction in NOx and PM of some 800kT and 5.25kT respectively by the year 2030.
- 3% fuel economy assumed;
- Additional technical measures will also bring benefits;
- No need for Euro VII.

ACEA supports

Global Harmonisation:

- <u>Priority</u> the Commission must establish Euro VI on the basis of a fully global WHDC:
 - World harmonisation of emission standards should represent the final goal of European policy makers;
 - World harmonisation should not be dictated by one Contracting Parties rules of today;
 - Final agreement on WHDC (options) must not penalise manufacturers through technical measures that would increase the stringency of any future emission limits.

ACEA supports

Global Technical Regulations as part of Euro VI:

- Worldwide Heavy-Duty On-Board Diagnostics (WWH-OBD);
 - Commission has already demonstrated its commitment to this GTR.
- Off-Cycle Emissions (OCE) and Portable Emission Measuring Systems (PEMS), when satisfactorily completed;
 - Based on the current OCE GTR proposal the requirements as specified would represent a significant and additional change in severity of the Euro VI emission legislation and are more demanding than the US2010 NTE requirements.

Test programs

- "Engine plus Aftertreatment" will not meet Euro VI:
 - The complete system has to be optimised;
 - Thermal management has to be optimised across the map;
 - Durability has to be demonstrated;
 - Fuel economy has to be realised;
 - The effects of biofuels have to be understood and catered for;
 - Technical solutions have to be adapted to production and packaging.
- As AECC has shown, if you apply all technical possibilities you can achieve ultra-low emissions but is that a costeffective and sellable concept for the truck community?
- ACEA would welcome a joint program with AECC to look at future fuel effects.

Summary

- A substantial proposal from ACEA.
- All stakeholders should recognise the contribution that the ACEA proposal will make to the reduction in NOx and PM emissions from heavy-duty vehicles.
- Policy makers should agree to play their part and achieve a Euro VI solution that is based on global regulations for heavy-duty vehicle manufacturers.
- A technology package applied globally will be a win-win for EU policy makers and for the competitiveness of the European industry.