Integrated Diesel System Achieving Ultra-Low Urban and Motorway NOx Emissions on the Road

J. Demuynck, C. Favre, D. Bosteels, AECC
G. Randlshofer, IPA
F. Bunar, J. Spitta, O. Friedrichs, A. Kuhrt, M. Brauer, IAV GmbH

40th International Vienna Motor Symposium • 16 May 2019
RDE legislation has improved real-world NOx emissions

- RDE requirements ensure that emissions are controlled over wider range of conditions

![Diagram showing the impact of RDE legislation on NOx emissions](image-url)
RDE legislation has improved real-world NOx emissions

On-road emissions of Euro 6d-Temp cars are well within standards

Source: PEMS results from ACEA and JAMA RDE database
Objective: demonstrate consistent low NOx emissions

Challenging driving conditions

- Low speed/load
 e.g. city driving

- High speed/load
 e.g. motorway driving

- Transients
 e.g. overtaking
Content

- Demonstrator concept: emission control technologies combined in integrated approach
- Tailpipe NOx and deNOx efficiency
 - RDE
 - City
 - Motorway
- Conclusions
Vehicle and powertrain characteristics

Vehicle
- C-segment
- 1700 kg

Drivetrain
- Manual gearbox, 6-speed
- 48 Volt mild-hybrid (belt-driven, P0)

Engine
- 1.5l, 4-cylinder, 2-valve
- EGR: uncooled HP and cooled LP

Euro 6b type approval (LNT + DPF)
Demonstrator concept: emissions control technologies

- LNT + dual-SCR to cover wide range of driving conditions

EGR: Exhaust Gas Recirculation
HP/LP: High/Low pressure
cc: close-coupled
LNT: Lean NOx trap
SCR: Selective Catalytic Reduction
DPF: Diesel Particulate Filter
SDPF: SCR on DPF
uf: underfloor
ASC: Ammonia Slip Catalyst
Demonstrator concept: hybrid support to emissions control

- Stabilisation of LNT regeneration during city driving
 - e.g. transient load compensation in case of unstable driver request

- Others
 - Reduction of engine-out NOx peaks during transients
 - Support to thermal management
Demonstrator concept: rapid prototype system control

- Stepwise active thermal management depending on LNT & ccSCR temperature
 - When LNT < 170°C & ccSCR < 150°C
 - throttle valve (used for EGR control): reduce exhaust mass flow rate
 - When LNT > 170°C & ccSCR < 220°C
 - late post-injection: create exothermic reaction on LNT
 - 48V mild-hybrid system: increase load on ICE

- Model-based control of SCR
 - For optimum NH₃ dosing control without slip
 - Separate dosing control for two urea injectors
 - 3 NOx sensors used
Combination of emissions tests on the road and in the lab

- **RDE**

- **City**

- **Motorway**

Typical SCR light-off temperature

[Graphs showing vehicle speed and temperature data for RDE, City, and Motorway tests]
Content

- Demonstrator concept: emission control technologies combined in integrated approach
- Tailpipe NOx and deNOx efficiency
 - RDE
 - City
 - Motorway
- Conclusions
8-40 mg/km achieved on RDE

- 90-96% deNOx efficiency
- No impact of ambient temperature

* Results at end of programme with refined calibration
All aftertreatment components contribute to NOx control

- City driving: LNT and close coupled SCR+SDPF
- Motorway driving: underfloor SCR required to secure robust emissions control

![Diagram showing NOx emissions for Urban and Motorway RDE](image)
Robust NOx control in the city, including cold-start

- **LNT regeneration enabled at low load**
- **Active thermal management to ensure early heat-up**
 - Active throughout entire TfL test
 - Typical light-off temperature reached within 300s after cold-start (800s gained)

Thermal management:
- **Initial calibration**: not active
- **Refined calibration**: active
24-47 mg/km NOx in the city

- Including challenging Berlin and Transport for London (TfL) tests
- TfL NOx: 80% improvement due to LNT regeneration stabilisation and active thermal management
- Impact of calibration measures on CO₂ was below 3% on WLTC and RDE

Urban NOx (mg/km)*

- Euro 6d-temp NTE
- Euro 6d NTE

Transport for London cycle*

- Initial calibration: 216 mg/km
- Refined calibration: 47 mg/km
- 80% improvement
3-63 mg/km on the motorway

- 95-99% deNOx efficiency
- Main deNOx by dual-SCR
- Challenge is increase in engine-out emissions
Tailpipe NOx and deNOx efficiency summary

![Graph showing NOx emissions and deNOx efficiency across different average vehicle speeds.](image-url)
Content

- Demonstrator concept: emission control technologies combined in integrated approach
- Tailpipe NOx and deNOx efficiency
 - RDE
 - City
 - Motorway
- Conclusions
Conclusions

- RDE requirements have ensured better control of NOx emissions under most EU driving conditions – these Euro 6d-temp cars are on the road today.

- This demo car shows that diesel NOx emissions can be kept at a very low level in a consistent way, over a wide range of driving conditions.

- Tailpipe NOx measured are 24-47 mg/km in the city and 3-63 mg/km on the motorway.

- This is achieved by combining existing catalyst technologies with improved emissions control functions supported by hybrid technology.
THANK YOU!

www.aecc.eu
dieselinformation.aecc.eu

@AECC_eu
AECC (Association for Emissions Control by Catalyst)
@aeccbrussels