DIESEL VEHICLE WITH ULTRA-LOW NOx EMISSIONS ON THE ROAD

Joachim Demuynck, Cécile Favre and Dirk Bosteels, AECC
Frank Bunar, Joachim Spitta and Andreas Kuhrt, IAV
RDE requirements ensure that emissions are controlled over wider range of conditions
SAE INTERNATIONAL

On-road emissions of Euro 6d-Temp cars are well within standards

RDE legislation has significantly improved real-world NOx emissions

Source: PEMS results from ACEA and JAMA RDE database
Objective: demonstrate consistent low NOx emissions

Challenging driving conditions

- Low speed/load
e.g. city driving

- High speed/load
e.g. motorway driving

- Transients
e.g. overtaking

![Image of cars in city and on motorway]

![Diagram showing tailpipe NOx emissions vs. average vehicle speed/load]

Majority of EU driving conditions

Pre-RDE

RDE benefit

Euro 6d

Demonstrator

Type Approval in lab

Low

Average vehicle speed/load

High

Tailpipe NOx (mg/km)

High

Low
• Concept: Emissions control technologies combined in integrated system approach

• Tailpipe emissions measured
 – NOx
 – PM & PN
 – THC & CO
 – NH₃

• Conclusions
Base vehicle and powertrain characteristics

- **Vehicle**
 - C-segment
 - 1700 kg

- **Drivetrain**
 - Manual gearbox, 6-speed
 - 48 Volt mild-hybrid (belt-driven, P0)

- **Engine**
 - 1.5l, 4-cylinder, 2-valve
 - EGR: uncooled HP and cooled LP

- **Euro 6b type approval (LNT + DPF)**
Emissions control technologies and system architecture

- LNT + dual-SCR to cover wide range of driving conditions
- Model-based SCR control

EGR: Exhaust Gas Recirculation
HP/LP: High/Low pressure
cc: close-coupled
LNT: Lean NOx trap
SCR: Selective Catalytic Reduction
DPF: Diesel Particulate Filter
SDPF: SCR on DPF
uf: underfloor
ASC: Ammonia Slip Catalyst
Robust NOx control across wide range of driving conditions
Robust NOx control in the city

- Consistent low NOx achieved, including on challenging Berlin and Transport for London (TfL) tests
- 80% improvement due to refined calibration
 - LNT regeneration stabilisation
 - Active thermal management

![Graph showing urban NOx emissions and cumulative NOx](image)
Particulate emissions controlled by SDPF under all driving conditions.
THC & CO emission well within standards on WLTC and RDE

- Remain below 50 mg/km on WLTC and RDE
- Increase on TfL due to impact of thermal management (optimisation was outside programme scope)
• NH₃ slip control implemented
 – Model-based calculation of NH₃ load
 – Benefit of dual-SCR with twin-urea injection
 • Separate control of NH₃ load for each SCR
 • Presence of underfloor SCR allows higher target NH₃ load for cc SCR+SDPF
 – Ammonia slip catalyst converts remaining NH₃
• Illustration for RDE test
 – Higher target NH₃ load for SDPF compared to underfloor SCR
 – NH₃ slip from SDPF is used on underfloor SCR

Tailpipe NH₃ slip controlled below 10 ppm on RDE
Conclusions

- RDE requirements have ensured better control of NOx emissions under real-world driving conditions.

- This demo car shows that diesel NOx emissions can be kept at a very low level in a consistent way, over a wide range of driving conditions.

- This is achieved by combining existing catalyst technologies with improved emissions control functions supported by hybrid technology.
Thank you

Dirk Bosteels
AECC
Bd. Auguste Reyers 80, 1030 Brussels
+3227068160
dirk.bosteels@aecc.eu

@AECC_eu
AECC (Association for Emissions Control by Catalyst)
@aeccbrussels