AECC Non-Road Mobile Machinery (NRMM) Test Programme: Particle Measurement and Characterisation

John May, Cécile Favre, Dirk Bosteels; AECC Jon Andersson, Chris Such, Simon Fagg; Ricardo

14th ETH Conference on Combustion Generated Nanoparticles Zürich, 2 August 2010

Association for Emissions Control by Catalyst (AECC) AISBL

AECC members: European Emissions Control companies

Technology for exhaust emissions control on all new cars (OEM and Aftermarket) and an increasing number of commercial vehicles, non-road applications and motorcycles.

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

Test Engine & Emissions Control System

- 4 cylinder, 4.4 litre industrial prototype engine developed for NRMM Stage IIIB, provided by OE manufacturer.
 - High Pressure Common Rail (set at 160 MPa), Variable Geometry Turbocharger and cooled, electronically controlled EGR.
 - Modified Stage IIIB engine calibration to be compatible with AECC-supplied Emissions Control System on the NRTC.
 - PM ~ 35 mg/kWh, NOx ~ 3.0 g/kWh
- Emissions Control System (ECS) provided by AECC
 - System hydrothermally aged for 200hours at 600°C.

- Non-Road Transient Cycle (NRTC) and range of steadystate (NRSC) cycles plus 3 Not-to-Exceed (NTE) test points.
- Preconditioning regime to provide day-to-day repeatability for both NOx and PM without excessive loading.

Regulated Emissions

- Engine-out CO and HC Emissions below Stage IV limits.
- NOx conversion is high (85-95%) over most test cycles, limits are readily met with the exception of NRSC F & Fmod cycles which are close to the limits.

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

Particulate Analyses

- Twin Horiba MDLT partial flow systems at tailpipe position.
 Emissions system bypass used for engine-out data.
 - One MDLT for standard PM and PMP PN measurements.
 - 47mm filters; TX40 for most tests, GF/A for chemical analysis.
 - 120cm/s filter face velocity and 1/400th exhaust split.
 - Software correction to compensate for additional flow drawn by SPCS.
 - One MDLT for advanced PM measurements (to Euro VI).
 - 47mm TX40 filters.
 - 80cm/s filter face velocity and 1/600th exhaust split.
- Particle Number (PN) measurements were taken from the partial flow system according to the latest Heavy-duty PMP inter-laboratory correlation exercise guide and ECE R49.
 - Horiba MEXA2000-SPCS system used.
 - PN data have not been corrected for background.
- Differential Mobility Spectrometer (Cambustion DMS500)
 - size distribution and number concentration from 5 nm to 1µm.

Exhaust System Layout - Sampling Points

	Standard Particulate Mass (PM)	Particulate for chemical analysis	'Advanced' Particulate Mass (PM)	Particle Numbers to PMP (PN)	Differential Mobility Spectrometer
Direct engine-out	0	0	0	0	0
Engine-out via by-pass	1	1	1	1	1
Post-DPF/pre-SCR	0	0	0	0	1
Tailpipe after ECS	2	1	3	3	2

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

Partial-Flow Particulate Measurements

- No obvious effects of PM sampling or media on measured PM Tailpipe emissions levels.
 - 3-4 mg/kWh on Cold NRTC and 1.5 to 2.5 mg/kWh on hot NRTC.

PM Regulated Emissions

 PM reduction across DPF meets limits with considerable margin over all cycles.

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

PMP Particle Number Results

- Cold and hot transient cycle tailpipe PN results well below 10¹¹/kWh.
- Steady state cycles (NRSC variants) all at PN levels ~10¹¹/kWh or below.
- NTE points PN emissions all >10¹¹/kWh and NTE #2 >10¹²/kWh.
- Engine-out PN from all cycles ranged from ~6x10¹³ to ~3x10¹⁴/kWh.
 - Tailpipe
 PN range
 ~10¹⁰ to
 <1.8x10¹²
 - Engine-out
 PN range
 ~10¹³ to >10¹⁴
 - ECS efficiency always >92%.

PMP Particle Number for NTE #1, 2, 3

NTE#1 1200 rpm, 550 Nm

NTE#2 1200 rpm, 220 Nm

NTE#3 2200 rpm, 165 Nm

- Some passive regeneration during F and F-mod cycles preceding NTE #1.
- NTE#1: substantial passive regeneration.
- NTE #2: filtration efficiency lowest.
- NTE #3: no passive regeneration.

Mean Exhaust temp [°C]	DPF	SCR
COLD NRTC	283	234
HOT NRTC	285	261
NRSC-C1	335	333
NRSC-D2	346	338
NRSC-F	323	342
NRSC-Fmod	326	342
NTE#1	411	378
NTE#2	388	343
NTE#3	319	300

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

DMS Size Distribution Results – Engine-out

- Transient cycle engine-out PN were high and substantial dilution ratios were required (c.1000).
- Almost all operating conditions showed bimodal character.
 - Consistent with low PM (low EC) calibration for this engine.
- Highest nucleation mode with cold start NRTC.
- Highest accumulation modes with cold NRTC, NRSC F and NRSC F-mod.
- Lowest specific PN emissions from NTE #1 and #2.

DMS Size Distribution Results - Tailpipe

- Transient cycle tailpipe PN were very low and at the limit of DMS detection (at DF=4).
- Particle size distributions still reasonable in the accumulation mode region.
- Transient cycle PN (always initial cycles in the daily protocol) show lowest accumulation mode levels.
 - DPF fill during preconditioning has limited PN emissions.
- NRSC cycles' accumulation mode results higher, as some passive regeneration reduces soot cake.
- NTE points always highest
 - Tested at the end of the day, following NRSC and transients.
 - Important passive regeneration during NTE #1.
 - NTE #3 levels at the high end of NRSC results.

DMS Size Distribution through the ECS

- The cold-start NRTC shows the high nucleation mode and accumulation mode levels at Engine-out.
- Pre-SCR and tailpipe levels are similar, although there is possibly some acc. mode reduction across the SCR.

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

Emissions Levels of Elemental Carbon (EC)

- Substantial reduction in EC from engine-out to tailpipe.
- Filtration efficiencies similar to PN
 - Elemental carbon comprised ~45% to ~70% of engine-out PM.
 - Volatiles dominated post-DPF filters, carbon fraction negligible.

Elemental Carbon Emissions Levels (No subtraction of filter blank)

- Engine and emissions control system
- Test equipment and procedures
- Particulate Mass measurement
- Particle Number measurements
- Particle size distributions
- Chemical analysis of particulate matter
- Summary and Conclusions

Summary (1)

- PM conversion efficiencies were 96% and 97% over the NRTC and NRSC C1 cycles respectively, resulting in tailpipe PM levels of 1 to 2 mg/kWh when measured with the partial flow method.
- Tailpipe Particulate Mass emissions from two different sampling media appeared broadly similar.
- Withdrawing a sample from a partial flow dilution system for PN measurements can result in a substantial reduction in measured Particulate Mass, if a correction is not made.
 - In this program, 13% of mass was removed.
- Elemental carbon emissions were reduced by the ECS.
 - >99% for all transient and steady state cycles once the filter background for EC was taken into account.
 - With subtraction of EC blank, tailpipe EC levels were negligible.

Summary (2)

- The HD-PMP method as developed by UN-ECE GRPE for on-road HD engines could readily be used to measure particle emissions (PM and PN) of NRMM engines.
- All transient cycles' data showed tailpipe Particle Number emissions well below 10¹¹/kWh.
- Steady state cycles' data showed emissions below 10¹²/kWh.
- Passive regeneration occurring during one NTE point influenced PN emissions for the following NTE point. Tailpipe particle numbers were still more than an order of magnitude below engine-out levels.
- ECS efficiency for PMP Particle Numbers was >99.8% for all transient and steady state cycles.
- The production-intent Stage IIIB prototype engine fitted with the AECC Emissions Control System readily met Stage IV emissions limits over a range of test cycles.

- @ Home
- @ AECC
- @ Air Quality & Health Effects
- Emissions Legislation
- Engine & Vehicle Emissions

Technology

AECC is an international non-profit scientific technThank yours. What are the emission control technologies?

OE engine manufacturer

- Yara International, urea supplier
- **Ricardo UK and the AECC Members**
- Publications. and you for your attention

incorporated into the catalytic converter or filter.

Catalyst-equipped cars were first introduced in the vehicles, motorcycles and non-road engines and

Association for Emissions Control by Catalyst AISBL ____

