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Test Engine

* Industrial prototype engine developed for Stage IIIB
provided by OE manufacturer. A
- 4 cylinder, 4.4 litre engine, 93 kW at 2200 rpm.
- High Pressure Common Rail (set at 160 MPa).
- Variable Geometry Turbocharger.
- Cooled EGR.

- No emission control system supplied
with the engine.

« Engine calibration.

- Engineering company provided a slightly modified Stage 1lIB engine
calibration for engine-out emissions to be compatible with ECS on
the NRTC.

- Engine-out emissions: PM ~35 mg/kwWh and NOx ~3.0 g/kwh.

« All calibration and test work used Carcal Reference 725A
diesel fuel (max. 10ppm S), low ash 15w-40 engine
lubricant and AdBlue® aqueous urea to ISO.



Emissions Control System (ECS)

Complete emissions control system supplied by AECC.

Oxidation catalyst (DOC), catalysed particulate filter (C-DPF)
and urea-SCR with ammonia slip catalyst (ASC).

Engine DOC C-DPF SCR + ASC

Urea

System hydrothermally aged for 200hours at 600°C.
Bosch advanced airless urea dosing system (DeNOx 2.2).

NOXx sensors at engine-out (input for dosing control) and
downstream of the SCR system as monitor; not closed loop.

Limited urea nozzle position optimization.




Exhaust System Layout

« Exhaust system lengths chosen to be
representative of space available in typical
iIndustrial machine.

* Pipes insulated between ECS components to
represent expected use of double skinned
pipes and other insulation by OEMSs.

« Urea dosing nozzle ~ 600mm upstream of SCR
— flow optimisation could probably reduce this
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Test Cycles run

NRTC - World Harmonised Non-Road Transient Cycle.
— 20 minutes soak period and 10%cold weighting.

NRSC - World Harmonised Non-Road Steady-State Cycle
(1ISO-8178 C1).

1ISO-8178 D2 Cycle.
1ISO-8178 F and F-mod Cycles.
3 selected Not-to-Exceed points (based on US practice).
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Note: Urea Injection was not specifically calibrated for D2, F and F-mod cycles.



Urea Calibration and Consumption

* Urea Injection Calibrated for NRTC and NRSC C1.

— Efficiency maps dependent on NH; loading, average brick
temperature, exhaust flow rate.

— Thermal model of ECS system calibrated in order to accurately
predict SCR temperature within DCU.

* Urea consumption has been calculated over NRSC and
NRTC by integrating the DeNOx dosing rate logged at 1Hz.

« Values correspond well to expected consumption given
the NOx reduction over the cycles (2.5 - 3.0 g/kWh).

Emissions Test BSFC urea as % fuel
[a/kWh] (by volume)
NRSC 8 mode 217 2.4
NRTC Cold 239 2.1
NRTC Hot 231 2.2
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Urea Injection Calibration for NRTC

Urea dosing starts ~210s into cold NRTC (SCR T > 190°C).
Dosing in hot NRTC interrupted when temperature falls.
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Preconditioning Procedures

Test Order

- Cold start tests were the first test every day followed by a soak period
then the hot-start 'partner’ test.

- NRSC-C1 always preceded NRSC-D2, and NRSC-C1 always followed
a dedicated intermediate preconditioning.

- NRSC-F always followed a cold and hot start pair and always
preceded Fmod and the three NTE tests.

- Preconditioning run evening before each cold-start test.

Preconditioning for day-to-day repeatabllity:
- Operation at rated power with no dosing emptied stored ammonia and
passively regenerated the DPF.

- DPF loaded with soot by running at 1800 rpm, 120 Nm for ~50
minutes to achieve max. 0.1 g/litre DPF loading.

- Finally, the urea dosing enabled for the last 7 minutes at the same
operating condition to store 3.5 g of ammonia.
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Exhaust System - Sampling Points

* Regulated gas + non-regulated gases (incl. NO,) by FTIR.

e Particulate Mass (PM) via partial flow dilution system (MDLT).
 Temperatures (T) and pressure (P).

e Particle number measurements to HD PMP protocol.
 Dynamic Mobility Spectrometer for particle size analysis.

T,P DMS T, P T,P DMS
T: P [ X ] L
L ]
regulated gulated
gase g
Engine Oxicet|  cetalysed DPF > ‘
[Various : i S5 DY ; :
instrume ntation] —————— Standard’' PM measurements
————— and PMP PN. GFIA filters used
: > 4 for 113 post-ECS tests for
: ) rea spra : l chemical analyses
MDLT#2 y
PM and PMP PN
Urea in
MDLT#1
PM Advanced PM
v v v measurements, TX40 filters
FTIR-N FTIR-N FTIR-H all tests
113 tests 2]3 taste all tests
post ECS post-ECﬁ

NOx S " ,
X Sensor NOx Sensorf#2

: This section replaced with by-pass pipe for engine-out measurements : 11



Regulated Emissions Measurement

Triplicate tests were carried out for tailpipe emissions
on each of the test cycles.

- Results have been averaged for these tests and standard
deviation calculated.

Simultaneous sampling of emissions:

- Gaseous: engine-out raw sample.
post ECS raw sample.

- PM & PN: engine-out Horiba MDLT via bypass.
post ECS Horiba MDLT.

All tailpipe data is shown
with 2c error bars.

Engine out level - |76%

% reduction
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| Tailpipe level
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HC and CO Emissions

* Engine-out emissions are below limit for most cycles.
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NOx Emissions

 NOX conversion is high (85-95%) over most test cycles,
limits are readily met with the exception of NRSC F &
Fmod which are close to the limits.

 NOXx conversion efficiency highly dependent on test
cycle temperature.
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Profile of Nitrogen Species through ECS -
Weighted NRTC and NRSC C1

NOXx reduction ~93%.
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PM Emissions

e PM reduction across DPF meets limits with considerable
margin over all cycles.
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Particle Number Results (PMP)

Cold and hot transient cycle tailpipe PN results well below 10Y/kWh.
Steady state cycles (NRSC variants) all at PN levels ~10*/kWh or below.
NTE points PN emissions all >1011/kWh and NTE #2 >1012/kwh.
Engine-out PN from all cycles ranged from ~6x1013 to ~3x10%4/kWh.
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Further Optimisation Potential

Thermal Management.

- Further improvement of SCR efficiency over the cold
phase of the NRTC is expected to offer a further small
benefit in overall weighted NRTC emissions.

System design.

- Component volumes and integration would be optimised
for a production application.

System optimisation.
- Including urea dosing and distribution.

Engine calibration.

18



Summary and Conclusions

A state-of-the-art engine system comprising a low emissions
Industrial engine designed for Stage [IIB and an Emissions Control
System produced substantial reductions in all regulated pollutants
over a range of test cycles.

The engine system was not fully optimised; there was no thermal
management to assist with warm-up from cold starts.

Stage IV emissions limits were met with engineering margin.

NOx conversion efficiencies were 95% and 92% over the NRTC
and NRSC C1 cycles respectively, resulting in tailpipe NOx levels
of 169 and 216 mg/kwh.

Tailpipe NO, levels were 50% or less of engine-out.

PM conversion efficiencies were 96% and 97% over the NRTC
and NRSC C1 cycles respectively, resulting in tailpipe PM levels of
1 to 2 mg/kWh (partial flow method).

ECS efficiency for PMP Particle Numbers was >99.8% for all
transient and steady state cycles.
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(mg/kWh) CO HC NOXx PM
Stage IV Limits 5000 190 400 25
(mg/kWh, 56-130 kW)
Weighted NRTC 13.28 6.76 168.89 1.70
C1 cycle 1.22 3.60 216.36 1.32
D2 cycle nd 3.32 205.14 1.50
F cycle 6.05 8.92 373.31 2.02
NTE #1 nd 1.21 155.32 1.06
NTE #2 nd 1.96 134.5 3.19
NTE #3 nd 2.70 106.99 1.93
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WORKING IN PARTNERSHIP
FOR CLEANER AIR
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