An Integrated Approach for CO₂ Emissions

AECC contribution to the CARS 21 WG4 meeting 26 January 2012

Association for Emissions Control by Catalyst (AECC) AISBL

AECC members: European Emissions Control companies

Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles and non-road mobile machinery.

AECC's Key Issues for CARS 21

AECC WRITTEN CONTRIBUTION TO THE CARS 21 PROCESS (JUNE 2011)

- Technological neutrality in defining and supporting clean vehicles for the future;
- Ensuring that harmonised test procedures, such as the future WLTP, provide a sound basis for good emissions performance;
- Improving harmonisation without diluting EU performance standards; and
- Type Approval figures reflecting real-life performance, with good market surveillance.

Technological Neutrality

AN INTEGRATED APPROACH ON CO_2 EMISSIONS MUST RETAIN TECHNOLOGICAL NEUTRALITY

- The continued development of Internal Combustion Engines and Emissions Control Systems is essential to maintain the competitiveness of the European Automotive Industry for the foreseeable future.
- IC engines and Emissions Control Systems will be needed for global markets for many years to come.
- IC engines will remain important not only for cars but are and will be used also heavy-duty and non-road applications.
- IC engines must not be excluded from research programs.
- Legislation should not discriminate against IC engines.

Importance of WLTC and RDE

- The new world-harmonised light-duty test cycle (WLTC) needs to adequately represent a broad range of operating conditions to ensure effective control under normal circumstances, both for CO₂ and for pollutant emissions.
 - emissions of different vehicles can vary significantly from each other at any given operating condition.
 - significant emissions levels are seen at points not in the NEDC.
 - key issues are transient conditions, cold starts and max. speed.
- Real Driving Emissions (RDE) tests will complement the test cycle to ensure good control of real-world emissions.
- Type Approval tests must ensure that the propulsion systems that are used in real life are fully evaluated for energy, CO₂ and regulated emissions performance.

Climate Forcing is not only CO₂

 CO₂ is the key 'climate change' emission from transport, but not the only one.

"Reducing atmospheric concentrations of short-lived climate forcers (SLCFs), specifically black carbon, tropospheric ozone and methane, offers a real opportunity to improve public health, reduce crop-yield losses, and slow the rate of near-term climate change, thereby aiding sustainable development." *UNEP Synthesis Report, November 2011.*

- DG-ENTR proposals to consider methane (as CO₂equivalent) along with CO₂, rather than as a pollutant reflect the relative importance of the two effects for methane.
- Black Carbon is a significant short-term global warmer.
- Fitment of Particulate Filters provides a major reduction in emissions of Black Carbon and is the 1st of the key abatement measures in the UNEP Report.

Incentives for Clean and Energy-efficient Vehicles

 "...because the majority of incentives put in place recently by Member States are targeted towards CO₂ or energy-efficiency, it seems logical to focus the new guidelines on <u>CO₂ and energy-efficiency</u>."

CARS 21 Interim Report, page 22.

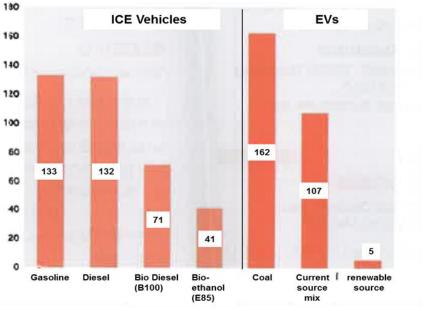
 "Financial incentives should be <u>technologically</u> <u>neutral</u> and avoid singling out one technology or creating counter-productive environmental effects, instead setting the criteria based on an objective environmental performance criterion."

CARS 21 Interim Report, Options and recommendations, page 23.

Performance Standards for CO₂ Reduction

The Commission's integrated approach includes tailpipe CO_2 measurement procedures for vehicles, performance standards for light-duty vehicles, a target to reduce the greenhouse gas intensity of fuels, and the reduction of CO_2 from electricity generation.

- Regulations (EC) No 443/2009 and (EU) No 510/2011 set the performance standards for the CO₂ emissions of new passenger cars and LCVs respectively.
- CO₂ measurement requirements are being put in place for heavyduty engines and L-category vehicles.
- The EU Emissions Trading System is designed to drive down CO₂ emissions from power generation.


BUT the electrical power (Wh/km) used for vehicles charging is not linked to the vehicle's CO_2 values...

Vehicle CO₂ Emissions

CO₂ EMISSIONS ARE A <u>GLOBAL</u> ISSUE OF VEHICLE <u>USE</u>

- Production of electric power for the propulsion of vehicles still involves CO₂ emissions at the power generating plant.
- Life-cycle CO₂ for various propulsion systems (see graph) is complex.
- Life Cycle Analysis also shows the additional NOx emissions from power production are more than the emissions saved by the lower use of IC-engined vehicles.

g/km CO₂ emission based on various motive power sources

*Including CO₂ emission from base material supply, manufacturing, transportation etc.

van Essen et al, CE Delft; Impacts of Electric Vehicles, April 2011.

Source: BMU/Agentur für Erneuerbare Energien

Vehicle CO₂ Emissions (2)

CARS 21 Interim Report Conclusion on LCA:

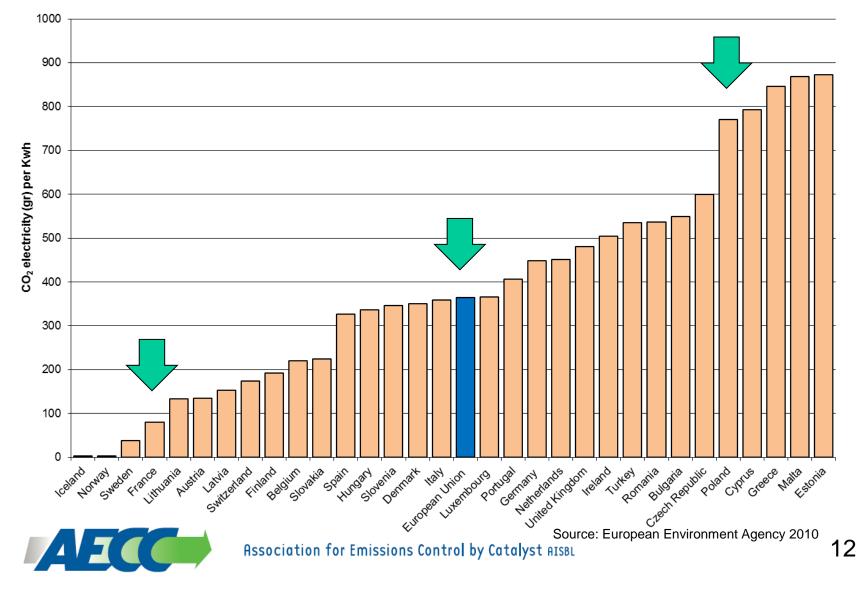
 "Although well-to-wheel performance is an important consideration for assessing the overall transport system, in order to avoid displacement of emissions, it is neither a convenient nor a suitable measure for the performance of the vehicle with respect to CO₂ efficiency."

CARS 21 Interim Report Recommendation:

• "The CO₂ figure from type-approval seems for light-duty vehicles currently the most appropriate measure of performance to be used for granting financial incentives."

This approach is not technology neutral and does not represent the real global CO_2 emissions from vehicle use.

Data is already available to permit calculation of the CO_2 produced from vehicle use to provide information to users.


Use of UN Regulation N°. 101

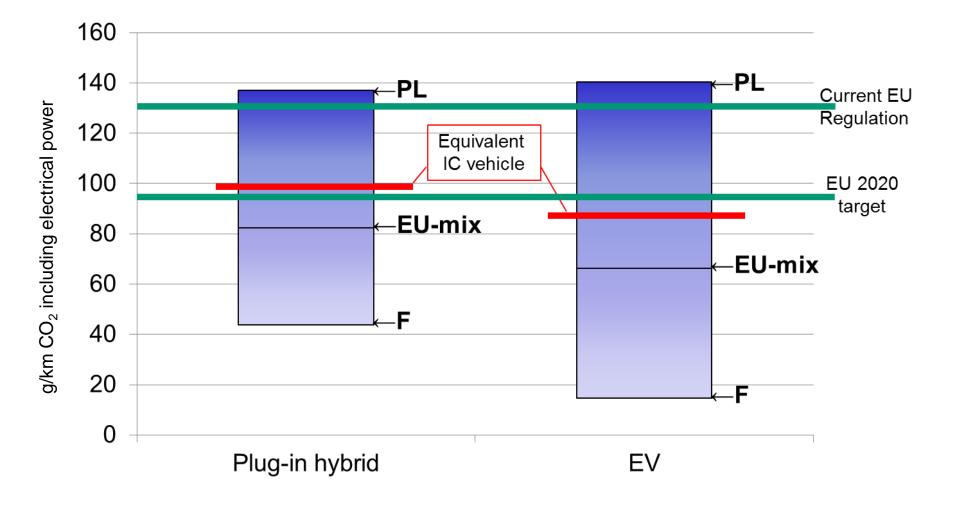
- UN Regulation N°. 101 sets uniform provisions for the measurement of CO₂ emissions, Fuel Consumption and/or electric energy consumption.
- It covers light-duty vehicles (M1 and N1) powered by IC engine only, hybrid electric powertrain, plug-in hybrid powertrain, or electric powertrain only.
- It requires the measurement of FC (for various fuels) and CO₂ where an IC engine is used and electric energy consumption (as Wh/km) where off-vehicle electric charging is used.
- Thus data is available on electric power usage during the Type Approval test and can be used for a technologyneutral comparison of real CO₂ values.

CO₂ from Electricity Generation

National & EU data (2008) is available on CO₂ emissions from power generation

Creating the Link for Consumers

- Type Approval data provides figures for CO₂ emissions from the vehicle coming from the IC engine.
- Type Approval data provides electrical power consumption data (Wh/km) for electric vehicles and plug-in hybrids.
- National and EU-mix data on the CO₂ emissions from electricity production is available.
- The latter can be used to provide the consumer with better data on the CO₂ emissions produced as a result of the use of the vehicle: Total CO₂ emissions (g/km) = a) + b)
 - a) CO_2 from usage of combustion engine over the test cycle (g/km)
 - b) CO_2 from mains electrical power used over the cycle (g/km) = g CO_2 /Wh × Wh/km


Examples on 2 Current Vehicle Types

Vehicle 1 (Plug-in Hybrid)			
CO ₂ emissions (g/km)		33	
Electrical energy (Wh/km)	135		
	France	Poland	EU-mix
Electric power g CO ₂ /Wh	0.080	0.771	0.365
CO ₂ from electricity (g/km)	10.8	104.1	49.2
Total CO ₂ emissions	43.8	137.1	82.2
Vehicle 2 (Electric Vehicle)			
Vehicle 2 (Electric Vehicle)		
Vehicle 2 (Electric Vehicle) CO ₂ emissions (g/km))	0	
		0 182	
CO ₂ emissions (g/km)	France	•	EU-mix
CO ₂ emissions (g/km)		182	EU-mix 0.365
CO ₂ emissions (g/km) Electrical energy (Wh/km)	France	182 Poland	_

Vehicle data from KBA, December 2011; Electricity data EEA 2010 (2008 data)

Variation in Vehicle CO₂

Conclusions

- CO₂ is a global, not just a tailpipe issue.
- CO₂ values need to be technology neutral.
- Consumer information needs to provide the appropriate CO₂ data.
- Vehicle incentives should be based on CO₂ values which include electric power generation.
- The continued viability of Internal Combustion Engines is essential for the sustainability and the competitiveness of the European Automotive Industry.

Thank you for your attention More information is available from <u>www.aecc.eu</u>

cars and over 85% of all new cars produced worldwide are equipped with autocatalysts. Catalytic converters and filters are also fitted to heavy-duty vehicles, motorcycles and non-road engines and vehicles.

Association for Emissions Control by Catalyst AISBL

