# New results from a 2015 PEMS testing campaign on a Diesel Euro 6b vehicle

<u>Cécile Favre</u>, Dirk Bosteels, John May – AECC Jon Andersson, Simon de Vries – Ricardo

11<sup>th</sup> Integer Emissions Summit & AdBlue<sup>®</sup> Forum Europe 2015 18 June 2015, Brussels, Belgium





## Association for Emissions Control by Catalyst (AECC) AISBL

AECC members: European Emissions Control companies













Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles and non-road mobile machinery.



### Diesel NOx and air quality

- The 2007 Euro 6 Regulation (EC 715/2007) requires emissions to be effectively limited throughout the normal life of the vehicles under normal conditions of use.
  - Control of Diesel NOx in real-world driving conditions is an essential step towards EU
    Member States meeting air quality targets.
- Emissions inventory and projections by DG Environment for different

NOx Conformity Factors:

- Baseline CF=1.5
- Euro 6 does not reduce real-world NO<sub>2</sub>
  further compared with Euro 4 (CF~10)
- Euro 6 NOx RDE reduce proportionally (CF=4)
- CF=1, Euro 6 limits met in real-world
- With a CF~4, NO<sub>2</sub> non-compliance in 2020 is 3 times higher than in the baseline (CF=1.5) scenario ("stations substantially above the NO<sub>2</sub> limit would increase from 3 to 10%").



Source: European Commission Staff Working Document – Impact Assessment accompanying the Clean Air Package, SWD(2013)531, 18 December 2013.



### Context of AECC test programme

- AECC recently demonstrated<sup>[1]</sup> NOx Deviation Ratios between 1.1 and 1.6 on a development vehicle, under specific boundary conditions, and with advanced calibration of existing Euro 6 Diesel emissions control technology.
- Emissions Analytics identified some Euro 6 cars with low onroad NOx emissions. AECC decided to evaluate one of them, according to the EU RDE procedure.
- AECC investigated at Ricardo, UK the real-world emissions performance of a commercially available Euro 6 Diesel car equipped with an advanced emissions control system.

<sup>[1]</sup> "Potential for Euro 6 Passenger Cars with SCR to meet RDE Requirements", 36<sup>th</sup> International Vienna Motor Symposium, May 2015, <a href="www.aecc.eu/content/pdf/150507%20FEV-AECC%20paper%20Potential%20for%20Euro%206%20Passenger%20Cars%20with%20SCR%20to%20meet%20RDE.pdf">www.aecc.eu/content/pdf/150507%20FEV-AECC%20paper%20Potential%20for%20Euro%206%20Passenger%20Cars%20with%20SCR%20to%20meet%20RDE.pdf</a>.



#### **Test vehicle**

- 2.0l Euro 6b Diesel car, 120 kW
- Emission Control System: Close Coupled DOC + SCR on DPF, High and Low Pressure EGR
- Vehicle and exhaust ageing ~5800 km
- Pump grade EN590 Diesel fuel (~9 ppm S, 2.6% FAME)

|         | Emissions               |  |  |  |  |
|---------|-------------------------|--|--|--|--|
| $CO_2$  | 111 g/km                |  |  |  |  |
| CO      | 203.4 mg/km             |  |  |  |  |
| NOx     | 56.4 mg/km              |  |  |  |  |
| THC+NOx | 82.4 mg/km              |  |  |  |  |
| PM      | 0.15 mg/km              |  |  |  |  |
| PN      | 2 x 10 <sup>9</sup> /km |  |  |  |  |



Source: CoC

Source: Lörch, Aachen Colloquium 2013



### **Emissions test regime**

NEDC

WLTC



 Real-Driving Emissions (RDE) route around Ricardo Technical Centre

| Duration            | 103 to 112 min  |
|---------------------|-----------------|
| Ambient temperature | 8 to 29°C       |
| Altitude            | -8 to 130 m     |
| Max. speed          | 121 to 130 km/h |







### Tailpipe emissions on NEDC and WLTC

 Euro 6 limits met for all pollutants, except NOx on WLTP.





1.E+12

#### Vehicle inertia

NEDC: 1590 kg

• WLTC: 1680 kg



### Tailpipe NOx emissions on test cycles





1500

-- WLTC Exhaust Temperature [°C]

1000

Time [s]

—NEDC Exhaust Temperature [°C]

## Portable Emissions Measurement System (PEMS)

- Horiba PEMS ONE for gaseous emissions (CO, CO<sub>2</sub>, NO, and NOx).
- Matter Engineering MD19-2E hot diluter with TSI 3010 particle number counter modified to provide a ~23 nm counting efficiency (d<sub>50</sub>) comparable to lab-based PMP for particle number.









### **Real-Driving Emissions**

**NOx Deviation Ratio** 5 repeats of same RDE route. 2 2.03 DPF regen 300 1.75 1.43 1.44 1 Emissions (mg/km) 200 ■ RDE#1 RDE#2 RDE#3 ■ RDE#4 RDE#5 100 0 CO2 (g/km) **NOx** CO ■ RDE#1 RDE#2 RDE#3 RDE#4 RDE#5



### Particle Number is controlled under real-world conditions

- Power supply issue on RDE#1, 2, and 4.
- PEMS PN available only for RDE#3 and RDE#5.





#### **On-road NOx emissions**





### **On-road SCR temperature**





### Urea dosing and tailpipe NOx emissions



- Urea dosing on RDE tests: 1.31 I/1000km
- Tank size: 17.1 I → AdBlue® refill interval: 13000 km



### **PEMS** data analysis with **EMROAD**

|       | Route validity      |                     |       |                | Emissions       |         | EMROAD processing |       |                |                                                |           |
|-------|---------------------|---------------------|-------|----------------|-----------------|---------|-------------------|-------|----------------|------------------------------------------------|-----------|
|       | Test Duration (min) | % Distance by phase |       |                | CO <sub>2</sub> | NOx     | Valid MAW >15%    |       |                | EMROAD driving style                           |           |
| Test  |                     | Urban<br><60kph     | Rural | Mway<br>>90kph | (g/km)          | (mg/km) | Urban<br><60kph   | Rural | Mway<br>>90kph | ≥50% valid<br>MAW<br>"normal" in<br>each phase | NOx<br>DR |
| RDE#1 | 111                 | 39%                 | 30%   | 31%            | 154.5           | 162     | 55%               | 32%   | 13%            | yes                                            | 2.03      |
| RDE#2 | 110                 | 42%                 | 26%   | 32%            | 149.7           | 115     | 52%               | 32%   | 16%            | yes                                            | 1.44      |
| RDE#3 | 115                 | 42%                 | 33%   | 25%            | 148.9           | 114     | 54%               | 34%   | 12%            | yes                                            | 1.43      |
| RDE#5 | 115                 | 37%                 | 33%   | 30%            | 147.1           | 140     | 57%               | 30%   | 13%            | yes                                            | 1.75      |

- Only RDE#2 is fully valid, including share of Moving Average Windows in Motorway conditions > 15%.
- RDE#2 achieves a NOx Deviation Ratio of 1.44 when calculated by EMROAD (vs. 1.2 based on unprocessed on-road emissions).



### **EMROAD Post-processing – RDE#2**





### Dynamic characteristics of RDE trips





### **Conclusions**

- Challenges were encountered to obtain a valid test with EMROAD.
- A commercially available Euro 6b Diesel car using an advanced emissions control system showed a NOx Deviation Ratio of 1.44 when tested under specific boundary conditions and according to current RDE procedure (incl. data post-processing).
- This was achieved with a urea consumption of 1.31 l/1000km, corresponding to a 13000 km refill interval, requiring customer intervention.



### **Acknowledgments**

 Thanks to Ricardo for their expertise in conducting repeatable testing, providing robust results and analysing the data in a timely manner.





### Thank you for your attention



Association for Emissions Control by Catalyst AISBL

