Particles Emissions from a Euro 6 Gasoline Direct Injection (GDI) Passenger Car

<u>Cécile Favre</u>, Joachim Demuynck, Dirk Bosteels

12th Integer Emissions Summit Europe

Brussels, 21-23 June 2016

Association for Emissions Control by Catalyst (AECC)

AECC members: European Emissions Control companies

Technology for exhaust emissions control on cars, buses and commercial vehicles and an increasing number of non-road applications and motorcycles.

Content

- Context
- AECC GDI emissions test programme
 - Programme set-up
 - Emissions on regulatory test cycles (NEDC and WLTC)
 - Real-Driving Emissions (RDE)
- Focus on cold start GDI PN emissions
- Conclusions

Health impact of ultrafine particles

- Concerns reported because of the surface area of UFP and its translocation capability into the human body
- Conclusions of 2013 WHO Review of Evidence on Health Aspects of Air Pollution (REVIHAAP)
 - Indications for toxic effects of UFP
 - Not enough epidemiological evidence for UFP air quality guideline in addition to PM_{2.5} and PM₁₀
 - Precautionary principle:
 WHO supports regulatory efforts to reduce the number of UFP (PN) in engine emissions

RDE legislation to close the gap between lab and real world emissions

- Not-To-Exceed limit = Euro 6 limit x Conformity Factor (CF)
 - CF defined for NOx
 - Particle Number CF to be defined in 3rd RDE package (in fall 2016)
 - Error margin to be reviewed annually from 2017 onwards
- CF applies to both urban part and total trip
- PEMS data post-processed with normalisation tools
 - EMROAD (moving average window) and CLEAR (power binning)
 - Normalisation for dynamic driving conditions
- Cold start emissions to be addressed in 3rd RDE package

The GDI particle RDE issue

- CO₂ legislation promotes fuelefficient Gasoline Direct Injection (GDI) in the EU
- Particles emitted by DI gasoline vehicles are higher than Euro 6c limit of 6×10¹¹ #/km, especially under real driving conditions
- Gasoline Particulate Filters (GPF) are an effective route to reduce the number of ultrafine particles under a range of driving conditions

Gasoline Particulate Filter (GPF)

Content

- Context
- AECC GDI emissions test programme
 - Programme set-up
 - Emissions on regulatory test cycles (NEDC and WLTC)
 - Real-Driving Emissions (RDE)
- Focus on cold start GDI PN emissions
- Conclusions

AECC GDI test programme

- Objective: investigate NOx & PN RDE without and with GPF
- At Ricardo, UK in cooperation with Concawe
- GDI car
 - Medium size, 1.4I engine
 - Market representative GDI technology targeting Euro 6c → only Euro 6b available
 - Original configuration w/o GPF
 - Add coated GPF demonstrator underfloor
- HORIBA PEMS equipment
 - Gaseous PEMS (CO₂, CO, NOx)
 - PEMS-PN demo unit

GDI test programme matrix

- Parameters evaluated
 - Chassis-dyno regulatory tests vs. on-road
 - Fuel type & quality: E5 reference vs. market, E10 reference
 - Cold start PN

Exhaust	Fuel	NEDC & WLTC	RDE
Original (without GPF)	Ref E5	1x	-
	Ref E10	1x	3x
	Market E5	1x	Зx
With coated GPF	Ref E10	1x	3x
	Market E5	1x	3x

Content

- Context
- AECC GDI emissions test programme
 - Programme set-up
 - Emissions on regulatory test cycles (NEDC and WLTC)
 - Real-Driving Emissions (RDE)
- Focus on cold start GDI PN emissions
- Conclusions

Emissions on NEDC & WLTC meet Euro 6c limits w/o GPF

— Euro 6c limit

All data measured with E5 reference fuel

Market fuel effect: WLTC emissions still meet Euro 6c limits, except PN

• PN emissions are sensitive to fuel quality

Euro 6c limit

With a GPF, NEDC and WLTC emissions all meet Euro 6c limits

Euro 6c limit

All data measured with E5 market fuel

Content

- Context
- AECC GDI emissions test programme
 - Programme set-up
 - Emissions on regulatory test cycles (NEDC and WLTC)
 - Real-Driving Emissions (RDE)
- Focus on cold start GDI PN emissions
- Conclusions

RDE route

Dynamic boundary conditions covered

Altitude gain: ~ 850m/100km

RDE results w/o GPF are comparable to WLTC performance

No data exclusions/normalisation

All data measured with E5 market fuel

Urban RDE results w/o GPF are higher than total RDE

No data exclusions/normalisation

All data measured with E5 market fuel

GPF ensures RDE PN well below a CF of 1.0

- No data exclusions/normalisation
- No CO₂ penalty was measured with GPF

All data measured with E5 market fuel

Association for Emissions Control by Catalyst AISBL

 CO_2 (g/km)

GPF ensures PN control below a CF of 1.0 also in the urban part of RDE

- No data exclusions/normalisation
- No CO₂ penalty was measured with GPF

All data measured with E5 market fuel

Next steps of the GDI programme

- Investigate
 - impact of normalisation tools (EMROAD and CLEAR)
 - fuel impact (reference E10 vs. market E5)
 - "severitized" RDE dynamic conditions
 - impact of ambient temperature
 - sub-23nm PN

Content

- Context
- AECC GDI emissions test programme
 - Programme set-up
 - Emissions on regulatory test cycles (NEDC and WLTC)
 - Real-Driving Emissions (RDE)
- Focus on cold start GDI PN emissions
- Conclusions

Impact of cold start on urban RDE

- The RDE test procedure currently excludes the first 5 minutes after engine start.
- We evaluated the contribution of these first 5 minutes.

Cold start impact on urban RDE PN can be large

- 1. RDE: up to 80% from cold start
- 2. RDE raw > CLEAR > EMROAD

Conclusions

- Engine-out PN emissions of GDIs are higher in real-life than on the regulatory test cycles.
- The GPF technology is available and demonstrates PN control under all driving conditions.
- Cold start (first 5 min excluded from RDE procedure) is significant for GDI PN emissions; it needs to be well controlled by the RDE legislation.

Thank you for your attention

Dieselretrofit

Association for Emissions Control by Catalyst AISBL

