Ultra-low on-road NOx emissions of a 48V mild-hybrid diesel with LNT and dual-SCR

J. Demuynck, C. Favre, D. Bosteels, AECC A. Kuhrt, J. Spitta, F. Bunar, IAV GmbH

10th Emission Control Conference • Dresden • 4 June 2019

RDE legislation has improved real-world NOx emissions

RDE requirements ensure that emissions are controlled over wider range of conditions

RDE legislation has improved real-world NOx emissions

On-road emissions of Euro 6d-Temp cars are well within standards

Objective: demonstrate consistent low NOx emissions

Challenging driving conditions

Low speed/load e.g. city driving

Transients
e.g. overtaking

Content

- Demonstrator concept
 - Emissions control technologies combined in integrated approach
 - ◆ 48V mild-hybrid to support emissions control
- Emissions tests conducted
- Tailpipe NOx and deNOx efficiency
 - **●** RDE
 - City
 - Motorway
- Conclusions

Vehicle and powertrain characteristics

- Vehicle
 - **Output** C-segment
 - **②** 1700 kg
- Drivetrain
 - Manual gearbox, 6-speed
 - ◆ 48 Volt mild-hybrid (belt-driven, PO)
- Engine
 - 1.5l, 4-cylinder, 2-valve
 - EGR: uncooled HP and cooled LP
- Euro 6b type approval (LNT + DPF)

Emissions control technologies

▶ LNT + dual-SCR to cover wide range of driving conditions

Model-based SCR control

Engine-out

EGR: Exhaust Gas Recirculation HP/LP: High/Low pressure

cc: close-coupled LNT: Lean NOx trap

SCR: Selective Catalytic Reduction

DPF: Diesel Particulate Filter

SDPF: SCR on DPF uf: underfloor

ASC: Ammonia Slip Catalyst

Emissions control technologies

Components in close-coupled position

48V mild-hybrid support to emissions control

- To stabilise LNT regeneration during city driving
 - Constant load increase in case of low load conditions
 - Transient load compensation in case of unstable driver request

- To cut transient engine-out NOx peaks
- To support active thermal management
 - ▶ In addition to late post-injection in ICE when LNT>170°C & ccSCR<220°C</p>
 - Throttle valve used when LNT<170°C

Combination of emissions tests on the road and in the lab

RDE

Motorway

8-40 mg/km achieved on RDE

- ♦ 90-96% deNOx efficiency
- No impact of ambient temperature

All aftertreatment components contribute to NOx control

- City driving: LNT and close coupled SCR+SDPF
- Motorway driving: underfloor SCR required to secure robust emissions control

Robust NOx control in the city, including cold-start

- LNT regeneration enabled at low load
- Active thermal management to ensure early heat-up
 - Active throughout entire TfL test
 - Typical light-off temperature reached within 300s after cold-start (800s gained)

Thermal management:

Initial calibration: not active

Refined calibration: active

24-47 mg/km NOx in the city

- Including challenging Berlin and Transport for London (TfL) tests
- TfL NOx: 80% improvement due to LNT regeneration stabilisation and active thermal management

Ultra-low NOx achieved with low impact on CO₂

- Impact of thermal management implemented
 - **♦** CO₂ increase on WLTC and RDE < 3%
- Other technologies are under development for thermal management with minimal CO₂ impact
 - ◆ Variable Valve Train (VVT) [1-2]
 - **♦** Electrically heated catalyst [3-4]
 - Fuel injection rate shaping [5]
 - ▶ P2 / P3 / P4 Hybridisation [6]

- 1. Brauer (IAV) "Schaltbare Ventiltriebselemente in Dieselmotoren als Beitrag zur Erfüllung der RDE-Gesetzgebung", 9th Emission Control Conference, Dresden 2018
- 2. Lückert (Daimler) "OM 656 The New 6-Cylinder Top Type Diesel Engine of Mercedes-Benz", 26th Aachen colloquium 2017.
- 3. Hartland (JLR) "Exhaust Gas Aftertreatment System to meet Future Low Emissions Requirements", 5th MinNOx Conference, Berlin, 2014
- 4. Avolio (Continental) "Super Clean Electrified Diesel: Towards Real NOx Emissions below 35 mg/km." 27th Aachen Colloquium 2018.
- 5. Brauer (IAV) "Vorteile der Einspritzverlaufsformung für den Kraftstoffverbrauch und die Schadstoffemission von Dieselmotoren", Tagung Diesel- und Benzindirekteinspritzung, Berlin 2010
- 6. Bunar (IAV) "Exhaust Aftertreatment Systems for Hybridized Diesel Powertrains in RDE Context", in 7th MinNOx Conference, Berlin 2018

3-63 mg/km on the motorway

- ◆ 95-99% deNOx efficiency
- Main deNOx by dual-SCR
- Challenge is increase in engine-out emissions

Tailpipe NOx and deNOx efficiency summary

Conclusions

- This demo car shows that diesel NOx emissions can be kept at a very low level in a consistent way, over a wide range of driving conditions.
- ◆ Tailpipe NOx measured are 24-47 mg/km in the city and 3-63 mg/km on the motorway.
- This is achieved by combining existing catalyst technologies with improved emissions control functions supported by hybrid technology.

THANK YOU!

www.aecc.eu dieselinformation.aecc.eu

@AECC_eu

AECC (Association for Emissions Control by Catalyst)

@aeccbrussels

