DIESEL VEHICLE WITH ULTRA-LOW NOX EMISSIONS ON THE ROAD

Joachim Demuynck, Cécile Favre and <u>Dirk Bosteels</u>, AECC Frank Bunar, Joachim Spitta and Andreas Kuhrt, IAV

RDE requirements ensure that emissions are controlled over wider range of conditions

On-road emissions of Euro 6d-Temp cars are well within standards

Objective: demonstrate consistent low NOx emissions

Challenging driving conditions

 Low speed/load e.g. city driving

 High speed/load e.g. motorway driving

Transients
e.g. overtaking

Content

• Concept: Emissions control technologies combined in integrated system approach

- Tailpipe emissions measured
 - NOx
 - PM & PN
 - THC & CO
 - NH₃

Conclusions

Base vehicle and powertrain characteristics

- Vehicle
 - C-segment
 - 1700 kg
- Drivetrain
 - Manual gearbox, 6-speed
 - 48 Volt mild-hybrid (belt-driven, P0)
- Engine
 - 1.5l, 4-cylinder, 2-valve
 - EGR: uncooled HP and cooled LP
- Euro 6b type approval (LNT + DPF)

Emissions control technologies and system architecture

- LNT + dual-SCR to cover wide range of driving conditions ۲
- Model-based SCR control •

uf: underfloor

cc: close-coupled LNT: Lean NOx trap

SDPF: SCR on DPF

Robust NOx control across wide range of driving conditions

Robust NOx control in the city

- Consistent low NOx achieved, including on challenging Berlin and Transport for London (TfL) tests
- 80% improvement due to refined calibration
 - LNT regeneration stabilisation
 - Active thermal management

11% /km/h Engine load: Vehicle speed: 500 F500 500 500 F 500 500 F500 En EO EO. 0 -0 -0 NOx Temp NOx Temp NOx Temp NOx 35^{ppm} 252°C 275°C []ppm 22 /°C []ppm ippm LNT SCR ASC SDPF SCR ► Mixer Mixer • https://youtu.be/uvmR56L9uT4 LNT Engine heat-up

regeneration

Particulate emissions controlled by SDPF under all driving conditions

THC & CO emission well within standards on WLTC and RDE

- Remain below 50 mg/km on WLTC and RDE
- Increase on TfL due to impact of thermal management (optimisation was outside programme scope)

Tailpipe NH₃ slip controlled below 10 ppm on RDE

- NH₃ slip control implemented
 - Model-based calculation of NH₃ load
 - Benefit of dual-SCR with twin-urea injection
 - Separate control of NH₃ load for each SCR
 - Presence of underfloor SCR allows higher target NH_3 load for cc SCR+SDPF
 - Ammonia slip catalyst converts remaining NH₃
- Illustration for RDE test
 - Higher target NH₃ load for SDPF compared to underfloor SCR
 - $NH_3 slip from SDPF is used on underfloor SCR$

Conclusions

- RDE requirements have ensured better control of NOx emissions under real-world driving conditions
- This demo car shows that diesel NOx emissions can be kept at a very low level in a consistent way, over a wide range of driving conditions.
- This is achieved by combining existing catalyst technologies with improved emissions control functions supported by hybrid technology.

Dirk Bosteels AECC Bd. Auguste Reyers 80, 1030 Brussels +3227068160 <u>dirk.bosteels@aecc.eu</u>

@aeccbrussels