RDE PN emissions from a GDI vehicle without and with a GPF

Dr. Joachim Demuynck

IQPC 4th international conference on RDE Berlin, 25-27 October 2016

Association for Emissions Control by Catalyst (AECC) AISBL

AECC members: European Emissions Control companies

Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles and non-road mobile machinery.

RDE legislation to close the gap between lab and real world emissions

The GDI particle RDE issue

- CO₂ legislation promotes fuelefficient Gasoline Direct Injection (GDI) in the EU
- Particles emitted by DI gasoline vehicles reported higher than Euro 6c limit of 6×10¹¹ #/km, especially under real driving conditions
- Gasoline Particulate Filters (GPF) are an effective route to reduce the number of ultrafine particles under a range of driving conditions

Gasoline Particulate Filter (GPF)

Content

- Test programme set-up
- Emissions on regulatory test cycles (NEDC and WLTC)
- Real-Driving Emissions (RDE)
 - On the road
 - On the dyno: impact of boundary conditions
- Conclusion

Test programme set-up

- Objective: investigate NOx & PN RDE without and with GPF
- At Ricardo in cooperation with Concawe
- Vehicle
 - C-segment, 1.4l engine
 - Market representative GDI technology targeting Euro 6c → only Euro 6b available
 - Original configuration w/o GPF
 - Add coated GPF demonstrator underfloor
- HORIBA PEMS equipment
 - Gaseous PEMS (CO₂, CO, NOx)
 - PEMS-PN demo unit

Underfloor view

Test programme set-up

- Identified parameters to evaluate
 - fuel type & quality
 - cold-start PN
 - driving dynamics (RDE on dyno)
 - cold ambient temperature
 - <23nm PN</p>
- Test matrix

Exhaust	Fuel	NEDC + WLTC	RDE on road	RDE on dyno
Original (without GPF)	Ref E5	1x	-	-
	Ref E10	1x	3x	-
	Market E5	1x	3x	6x
With coated GPF	Ref E10	1x	3x	-
	Market E5	1x	Зx	6x

Content

- Test programme set-up
- Emissions on regulatory test cycles (NEDC and WLTC)
- Real-Driving Emissions (RDE)
 - On the road
 - On the dyno: impact of boundary conditions
- Conclusion

NEDC + WLTC results w/o GPF on E5 ref fuel are below Euro 6c limit

Data demonstrates that the vehicle is a state-of-the-art GDI

Euro 6c limit

Association for Emissions Control by Catalyst AISBL

10

PN results w/o GPF go above Euro 6c limit on other dyno tests

PN results with GPF are below Euro 6c limit on all dyno tests

No CO₂ penalty was measured for the GPF on NEDC and WLTC

I Measurement range if repeated

Content

- Test programme set-up
- Emissions on regulatory test cycles (NEDC and WLTC)
- Real-Driving Emissions (RDE)
 - On the road
 - On the dyno: impact of boundary conditions
- Conclusion

RDE route is within the requirements

Measured data are within moderate environmental boundary conditions

Measured data are within the dynamic boundary conditions

PN results w/o GPF increase towards Euro 6d NTE limit on the road

PN results with GPF are well below Euro 6d NTE limit on the road

No CO₂ penalty was measured for the GPF on the road

I Measurement range 3x RDE

Content

- Test programme set-up
- Emissions on regulatory test cycles (NEDC and WLTC)
- Real-Driving Emissions (RDE)
 - On the road
 - On the dyno: impact of boundary conditions
- Conclusion

RDE on dyno to investigate impact of going towards RDE boundary

3. Change ambient temperature

30

40

2. Change dyno load

MAW Average Speed [km/h]

10

20

Ambient temperature (°C)

1400

1200

1000

800

600

400

200

0

-10

÷

L

L

Altitude (m)

Association for Emissions Control by Catalyst AISBL

on road w/o GPF

on road with GPF

moderate boundary

extended boundary

RDE on dyno

PN results w/o GPF increase above Euro 6d NTE limit towards RDE boundary

Euro 6d NTE limit (EC proposal Sept 16) Association for Emission

PN results with GPF remain below Euro 6d NTE limit

I Measurement range 3x RDE

(EC proposal Sept 16) Association for Emissions Control by Catalyst AISBL

Content

- Test programme set-up
- Emissions on regulatory test cycles (NEDC and WLTC)
- Real-Driving Emissions (RDE)
 - On the road
 - On the dyno: impact of boundary conditions
- Conclusion

Conclusion

The programme demonstrated that a GPF gives real-world PN emissions below the currently proposed Euro 6d NTE limit under the conditions tested w/o GPF with GPF

NEDC + WLTC RDE on road towards RDE boundary (on chassis dyno) Euro 6d NTE limit Euro 6c limit (EC proposal Sept 16) 26 Association for Emissions Control by Catalyst AISBL

Thank you for your attention

Dieselretrofit

Association for Emissions Control by Catalyst AISBL

