Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control on a Heavy-duty Truck Application

P. Mendoza Villafuerte, J. Demuynck, D. Bosteels, AECC AISBL T. Wilkes, L. Robb, M. Schönen, FEV Europe GmbH

42nd International Vienna Motor Symposium • 30 April 2021

Motivation : Emissions from Euro VI vehicles

- Euro VI heavy-duty vehicles show low NOx emissions overall
- There are, however, remaining NOx emissions events, mainly within urban operation.

Examples of NOx emissions over different speed ranges for a Euro VI Step A N3 tipper, a Euro VI Step C N3 tractor, a Euro VI N2 Step D rigid distribution truck (D1), a Euro VI Step D N3 tractor tanker semi-trailer (D2) and a Euro VI Step D N3 tractor semi-trailer (D3) as presented by <u>AECC at the AGVES meeting</u>, July 2020.

NTE – Not-to-exceed limit

2

Agenda

- Objective of the heavy-duty demonstrator vehicle project
- Demonstrator concept: emissions control technologies combined in integrated approach
- ♦ AECC HD diesel demo vehicle tailpipe emissions results
- Summary

Objective: demonstrate ultra-low NOx emissions

- In a broad range of driving conditions including cold start, urban and regional delivery
 - With minimum impact on CO₂
- Focus on on-road vehicle measurements
 - ♦ All calibration was performed on the road
 - PEMS testing has been used to verify and complement results
 - Both regulated and unregulated pollutants have been measured (N₂O, NH₃ and PN₁₀) during the PEMS campaign

Vehicle: MB Actros, Euro VI C, 12.8 I, HP EGR, 450hp

Concept phase simulation & technology assessment

Simulation was conducted to investigate implementation of the new emissions control system layout with or without internal heating measures (HM)

*Simulated performance for ISC route at ~20°C and 100% payload, HM – Heating Measures

42nd International Vienna Motor Symposium– 30 April 2021

Demonstrator concept: emissions control technologies

ccDOC + ccSCR/ASC + DOC + cDPF + ufSCR/ASC

• Better integration of proven emission reduction technology in a commercially feasible manner

• Hydrothermal aged components targeting 500k km

ASC: Ammonia Slip Catalyst

Smart Integration of catalysts and engine operation

- Three calibration loops were conducted covering the SCR, combustion and heating measures
- During the calibration loops, data was obtained by NOx & NH₃ sensors installed in the system
- PEMS testing used to fine tune the calibration and to verify the regulated and non-regulated emissions results

Challenging cycles have been applied for on-road testing

42 to 187 mg/kWh of NOx achieved in urban operation

- Integrated system including closecoupled catalysts and heating measures ensure quick heat up of the emission control system
- Ultra-low NOx emissions are feasible over a broad range of operating conditions^{1,2,3}

¹ Urban delivery (<35 km/h) with 10 stops (~1 min), total trip duration is ~1 hour and work completed is about 14-16 kWh

² ISC N3 Euro VI-c route

³ The results are reported as measured under the specified test routes and conditions and cover a range of ambient temperatures from 4-11 °C

42nd International Vienna Motor Symposium– 30 April 2021

High DeNOx efficiency overall

Initial simulation results confirmed with significant reduction of NOx during onroad testing^{1,2}

Total engine out NOx = 690 g
Total tailpipe NOx = 7.9 g

♦ 98 % NOx reduction

NOx engine out vs tailpipe

¹ ISC N3 Euro VI-c route, 10 °C ambient temperature, 50 % payload
 ² The results are reported as measured under the specified test routes and conditions

42nd International Vienna Motor Symposium– 30 April 2021

Cold start NOx emissions remaining challenge

- NOx results^{1,2} show that cold-start remains the main emission event
- The close-coupled catalysts result in a shortened heat-up time of the system
- Emissions are well controlled once the system is warm

¹ ISC tests performed with 10 % payload, Test 1 & 2 conducted at 8 °C and 10 °C respectively

Beating the thermal challenge in urban operation

- Results^{1,2} show the innovative system can hold its temperature through stopgo urban delivery operation
- The close-coupled catalysts and engine heating measures ensure a consistent thermal behavior

¹ Urban Delivery test performed with 10 % payload, at 10 °C. The trip combined short stops with duration between 1 to 3 minutes.

² The results are reported as measured under the specified test routes and conditions

Catalyst temperature is kept during heavy rural traffic

The system demonstrates the ccSCR temperature is well kept during heavy traffic conditions within the rural driving^{1,2}

¹ ISC test performed with 10 % payload, at 8 °C. The figure represents 20 minutes peak time traffic during the rural section of the ISC with an average speed of 24 km/h ² The results are reported as measured under the specified test routes and conditions

Non regulated emissions are well controlled

- Preliminary results^{1,2} show good control on NH₃, N₂O and PN₁₀
- Challenges are expected towards combination of boundary conditions to be tested further

	NH ₃	N ₂ O	PN ₁₀
	(mg/kWh)	(mg/kWh)	(#/kWh)
Urban	0,0	58,2	6,1E+10
Rural	2,6	68,5	2,4E+09
Motorway	13,0	35,2	2,3E+09
Total trip	6,9	45,3	3,1E+10

¹ ISC test performed with 10% payload and conducted at 10°C

² The results are reported as measured under the specified test routes and conditions

14

Summary

- Motivation of this work was to control remaining NOx emission events mainly within urban operation seen on Euro VI vehicles
- Objectives and targets of the program on ultra low pollutant emissions and minimum CO2 impact have been met
- The innovative emissions control system layout integrates proven emission reduction technology in a commercially feasible manner
- Ultra-low NOx emissions are technically feasible in a broad range of driving conditions thanks to the close-coupled catalysts and heating measures implemented on the truck
- Results show low non-regulated emissions can be achieved
- AECC will continue to demonstrate technologies are available today to effectively control emissions from ICE under real-world operation

THANK YOU !

@AECC_eu
AECC (Association for

AECC eu

AECC (Association for Emissions Control by Catalyst)

www.aecc.eu

