Advanced emission controls and renewable fuels for future-proof engines with low pollutants and lifecycle CO₂ emissions

Dr. Joachim Demuynck

9th Intern. Conf. "Fuel Science - From Production to Propulsion" • 22-24 June 2021

Association for Emissions Control by Catalyst (AECC AISBL)

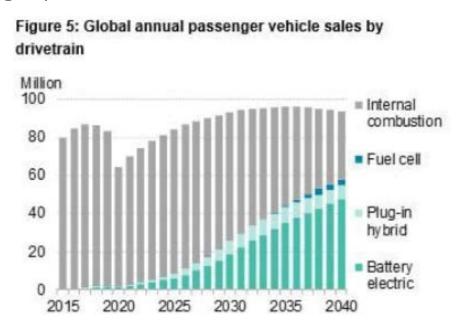
AECC members: European Emissions Control companies

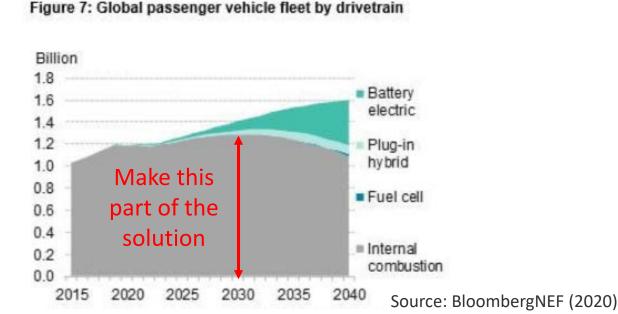
- Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles, and non-road mobile machinery
 - ♠ AECC is listed as # 78711786419-61 in EU Transparency Register and has consultative status with the UN Economic and Social Council (ECOSOC)

ICE powertrains contribution to sustainability goals

- Low pollutant emissions
 - Significant steps taken with introduction of RDE towards Euro 6d
 - ◆ Further steps expected from Euro 7/VII

_																														
		2016			2017				2018			2019				2020					2021	2021		2022			2023			
		Q1	Q2	Q3	Q4	Q1	Q2 Q	3 Q4	Q1	Q2	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q 2 C	3 Q	4 Q:	1 Q2	Q3	Q4	Q1	Q2 C	(3 Q4
	RDE monitoring phase	K	īT																											
Euro 6	NOx requirements		1			NT				Euro 6-dTE			TEM	EMP All N			T Euro 6d All					NOx CF = 1.0 + 0.43 err				error	or margin			
	PN requirements										All	All PN CF = 1.0 + 0				+ 0	0.5 error margin							<u> </u>						
Euro 7/VII																(CLO	VE st	udy				\Box	<u> </u>	C pr	opos	al			
Low greenhouse gas emissions											То	day	7			١	IT: N	lew 1	ypes											


- - ▶ Increase in efficiency and level of electrification for new vehicles
 - Wider usage of renewable fuels to reduce Well-to-Wheel and lifecycle emissions
 - Immediate reductions for the existing fleet
 - New vehicles



All: All Types

GHG is a global issue, legacy fleet has to be part of solution

- OGHG emissions contribute to global climate warming independently from location of origin
- ◆ GHG emissions are stored 300-1000 years in the atmosphere, accumulation of GHG emissions is to be minimised to stay within the limited available GHG budget for the 1.5°C target
- Electrifying the fleet is not enough as fleet renewal and renewable electricity ramp-up takes time
- The legacy vehicle fleet with ICEs needs to be part of the solution



ASSOCIATION FOR EMISSIONS CONTROL BY CATALYST

Transition to 2050 is essential due to available GHG budget

- Accumulation of emissions towards 2050 is to be minimized
- Existing scenarios expected to significantly exceed the budget
- Extra 'carbon investment' emissions will be emitted to build new infrastructures, filling up the GHG budget
- Renewable fuels are essential to achieve additional short-term CO₂ emission reductions
 - Drop-in capability allows using existing infrastructure
 - Only solution to reduce emissions from the legacy fleet in addition to new vehicles

Source: Frontier Economics (2021)

AECC validates renewable fuels in test programmes

- Ultra-low emissions are compatible with overall low WtW/LCA CO₂ emissions
- AECC demonstrates this for LD and HD vehicles
- Focus of this presentation is on LD diesel and gasoline

Acknowledgements of project partners

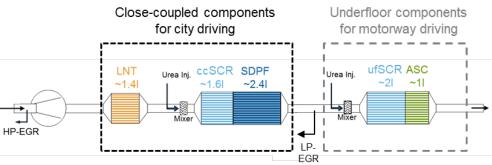
- LD diesel demonstrator
 - Project realisation

◆ Follow-up work on renewable fuels and Well-to-Wheel analysis

LD gasoline demonstrator

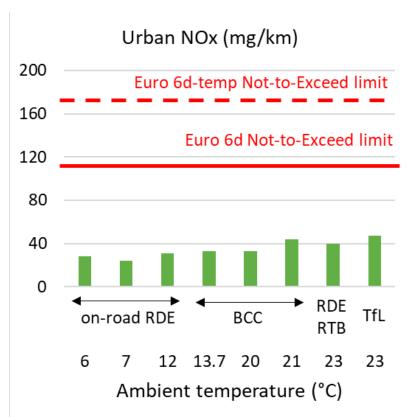
HD diesel demonstrator

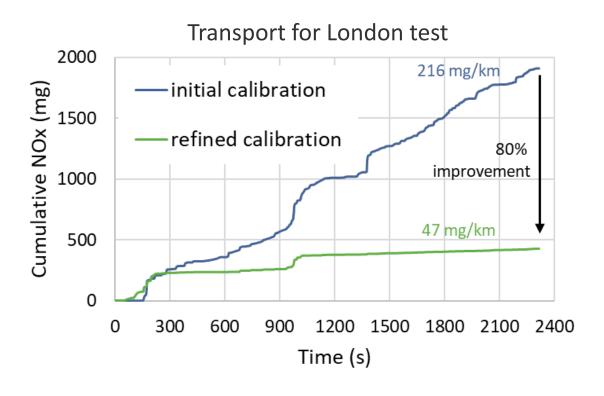
Automotive Grade Urea Sector Group



Ultra-low emissions diesel demonstrator

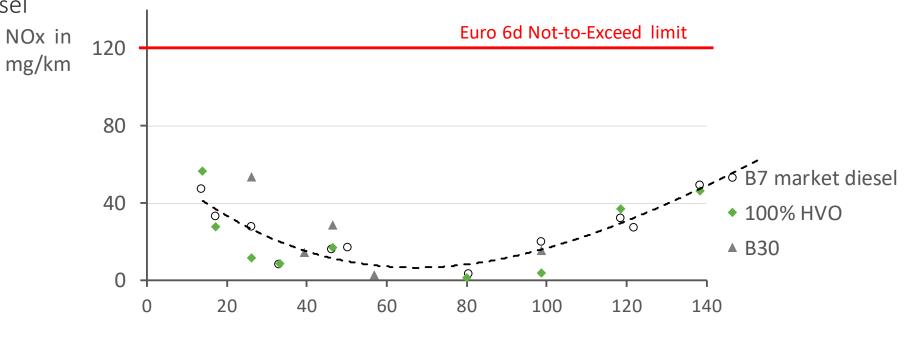
- Objective
 - Demonstrate ultra-low NOx emissions over wide range of driving conditions
 - Tests on renewable fuels
 - Investigate low Well-to-Wheel CO₂ emissions
 - Paraffinic fuels (HVO, BTL, e-diesel)
 - FAME based (B30)
 - Validate pollutant emissions achieved on market fuel
- Demonstrator concept
 - Emission control system with combination of Lean NOx Trap and dual-Selective Catalytic Reduction
 - ◆ 48V mild-hybrid system


1) J. Demuynck, et al.; "Integrated Diesel System Achieving Ultra-Low Urban and Motorway NOx Emissions on the Road", 40th Vienna Motor Symposium, 2019 https://www.aecc.eu/wp-content/uploads/2019/04/190516-AECC-IAV-IPA-Integrated-Diesel-System-achieving-Ultra-Low-NOx-on-the-road-Vienna-Symposium.pdf


- 2) Joint MTZ publication with Bosch, Vitesco, FEV and IAV https://www.aecc.eu/wp-content/uploads/2020/09/200901-modern-diesel-MTZ.pdf
- 3) Videos of instantaneous conversion performance available at www.youtube.com/channel/UCbPS9op5ztLqrv6zlMH IcQ

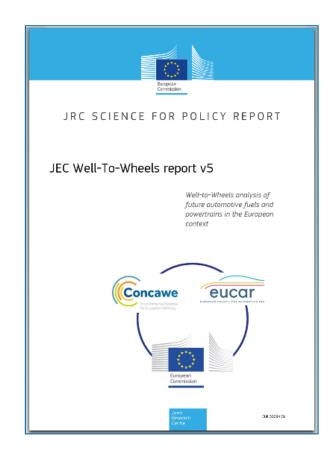
Ultra-low emissions diesel demonstrator

- Dow urban NOx emissions for different tests over range of ambient temperature
- Significant improvement achieved due to LNT regeneration stabilisation and thermal management



Low pollutant emissions confirmed for low carbon fuels

- Reference tests on B7 market diesel (7% fatty-acid-methyl-ester content)
- > Tests on renewable fuels without modification to vehicle hardware or software
 - ◆ 100% HVO (Hydrotreated Vegetable Oil)
 - ▶ B30 diesel

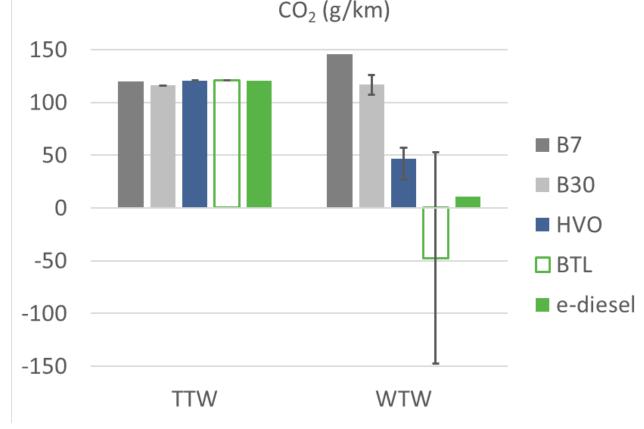


Emission test average vehicle speed in km/h

Well-to-Wheel calculations to investigate CO₂ impact

- Methodology of JEC WtW report v5 used http://dx.doi.org/10.2760/100379
- Several representative production pathways studied
 - ◆ Paraffinic fuels (associated with 100% HVO tests)
 - HVO: palm oil, waste cooking oil, EU mix
 - BTL (biomass-to-liquid): waste wood
 - Hydrothermal liquefaction
 - Fischer-Tropsch route with CCS (carbon capture and storage)
 - e-diesel: Fischer-Tropsch route with SOEC (solid oxide) electrolyser
 - ◆ FAME (associated with B7 and B30 tests)
 - Rapeseed oil
 - Palm oil
 - Waste cooking oil

Well-to-Wheel calculations to investigate CO₂ impact

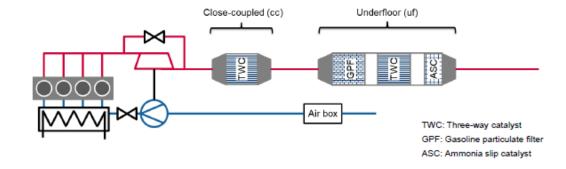

- Tank-to-Wheel (tailpipe) measurements show similar results for the different fuels
- ♦ Well-to-Wheel evaluation versus B7 reference depending on production pathway

▶ B30: -14 to -26%

PHVO: -60 to -82%

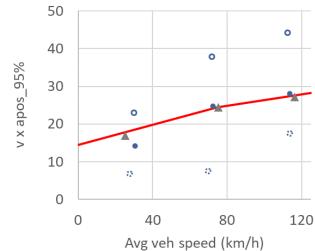
● BTL: -64% to -200%

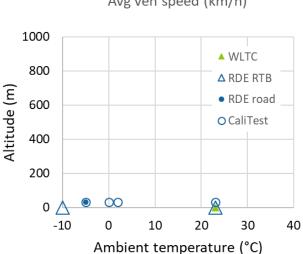
№ E-fuel: -93%



LD gasoline demonstrator concept

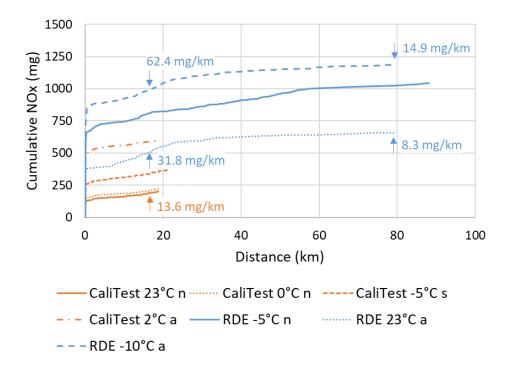
- Base vehicle
 - C-segment vehicle
 - Engine
 - 1.5l with 4 cylinders
 - Variable valve train with cylinder deactivation
 - ◆ 48V mild-hybrid (belt-driven, P0 configuration)
 - Euro 6d type-approval baseline with GPF + TWC
- Emission control system
 - ccTWC, ufGPF+TWC+ASC¹
 - ¹ ASC operation strategy for gasoline under investigation in addition to improved lambda control
 - Bench aged components targeting 160k km

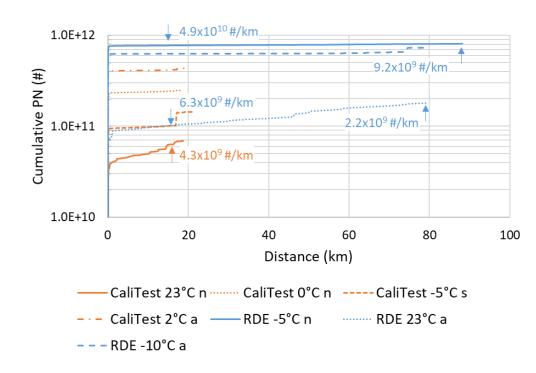




LD gasoline demonstrator preliminary data

- Exploring beyond Euro 6 RDE boundary conditions
- On the chassis dyno
 - WLTC at 23°C
 - ◆ RDE aggressive at 23°C and -10°C
- On the road
 - ◆ RDE normal driving at -5°C
 - Short calibration test
 - Normal driving at 0°C and 23°C
 - Smooth driving at -5°C
 - Aggressive driving at 2°C


- road RDE normal
- road RDE smooth
- road aggressive
- ▲ dyno RDE

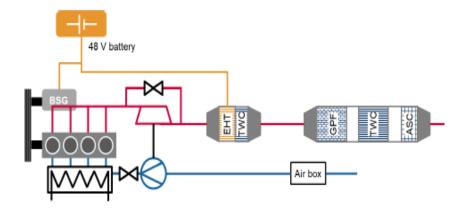

RDE limit

Ultra-low emissions over range of driving conditions

- Initial cold-start effect is observed for NOx and PN
- Near-zero emissions during the rest of the tests

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

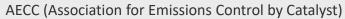
²Urban values are evaluated at a trip length of 16 km


Conclusion

- Low pollutant emissions shown over wide range of driving conditions with advanced emission control systems integrated in modern vehicles
 - Light-duty diesel demonstrator
 - **②** Light-duty gasoline demonstrator
- Significant WtW CO₂ reductions possible with the use of sustainable renewable fuels illustrated for a light-duty diesel demonstrator vehicle
- Part of this reduction is already possible for the existing fleet as most paraffinic compounds are drop-in for market diesel fuel, i.e. compatible with existing vehicles and infrastructure
- ▶ Internal Combustion Engine is part of the sustainable mobility solutions to contribute to EU Green Deal climate-neutral and zero-emission goals along with electrification

Outlook

- Further investigations for LD gasoline and HD diesel are ongoing
 - Implementation of electrically heated catalyst to further reduce initial cold-start emissions,
 e.g. on the LD gasoline demonstrator vehicle


- Ocandidate sustainable renewable fuels for validation of ultra-low pollutant emissions are investigated
 - LD gasoline demonstrator: e-gasoline
 - HD diesel demonstrator: e-diesel, HVO, R33

THANK YOU!

www.aecc.eu dieselinformation.aecc.eu

