Enabling Upcoming Euro 7 Standards by Advanced Emission Controls with Low CO₂ Emissions

Dirk Bosteels

Content

Introduction

- European Commission work programme 2021
- Euro 7/VII process
- ♦ AECC work on sustainable ICE
- Heavy-duty diesel
- Light-duty diesel
- Summary and outlook

Commission work programme 2021

Transport related activities linked to European Green Deal Communication

- ♦ 'Fit for 55' package to achieve 55% CO₂ reduction compared to 1990 (expected 14 July 2021)
 - Amendment to Renewable Energy Directive to implement the ambition of the new 2030 climate target
 - Revision of the Energy Tax Directive
 - Revision of the Regulation setting CO₂ emission performance standards for new passenger cars and for new light commercial vehicles

Sustainable and Smart Mobility Strategy (SSMS)

Development of Euro 7 emission standards for cars, vans, lorries and buses (in Q4 2021)

Euro 7/VII process

- The AGVES expert working group met until end of April 2021
- CLOVE consortium studies expected to finish by Q2/2021
 - Scenarios presented for light- and heavy-duty vehicles

confirmed step

- Will provide further input for the European Commission impact assessment
- The European Commission proposal is expected within 2021 followed by ordinary decision process by European Parliament and Council

			2019	2020	2021	2022	2023	2024	2025	2030	
_ight-duty	EU	implementation									
		New Type cars		Euro 6d					Euro 7		
		preparation							1		
		Euro 7	CLOVE	study	EC prop	Ordinar	y Legislative	procedure			
leavy-duty	EU	implementation									
		New Types			Euro VI - E		* Positive Ig	gnition	Euro VII		
		preparation							Ť		
		Euro VII	CLOVE	study	EC prop	Ordinar	y Legislative	procedure			

anticipated step legislative preparation

Euro 7/VII process

- CLOVE scenarios for light-duty vehicles
 - Testing conditions
 - Extract of table
 - Any condition for several parameters for which boundary condition was defined in Euro 6d RDE
 - Possible power restrictions for first two kilometres for normal conditions are being evaluated by CLOVE
 - Emission limits for normal conditions
 - For 160k km, further deterioration factors for 240k km are being evaluated by CLOVE

Param	eter		Normal	EURO 7 Condition	is of use		E Extended C	URO 7 Conditions o	f use		
Emission Li	mit Form		A budget up value in mg/	to 16 km ar km or #/km	id a constar above 16 k	nt 3 ti m	3 times the limit of normal conditions				
Ambient temp	erature [°C]			-7 to 35°C			-10 to +45°C				
Max. altitu	ude [m]			1600 m			2200 m				
Towing/aerodynam	Towing/aerodynamic modifications			Not included	ł		Allowed				
Age/Mileage of	Vehicle [km]	Up to 24	10k km or <mark>15</mark>	years ⁽¹⁾		Up to 240k	: km or <mark>15</mark> yea	rs (1)		
Minimum mileage	e before test	ing		3000 km			Any	condition			
Pollutant	СО	NMOG	NO _x	PM	PN ₁₀	NH ₃	CH4 ^(*)	N ₂ O ^(*)	нсно		
Unit	mg/km	mg/km	mg/km	mg/km	#/km	mg/km	mg/km	mg/km	mg/km		
				Scenario	1						
Cars with and Vans	400	45	30	2	1×10 ¹¹	10	20	20	5		
				Scenario	2						
Cars and Vans	400	25	20	2	1×10 ¹¹	10	10	10	5		

Euro 7/VII process

- CLOVE scenarios for heavy-duty vehicles
 - Testing conditions
 - Extract of table
 - Emission limits for normal conditions for HD diesel assessment
 - Combination of cold-start budget with Moving Average Window (MAW) values for 90th and 100th percentile
 - For 300k/700k km, further deterioration factors for 700k/1200k km are being evaluated by CLOVE

Parameter		EUI Normal c	RO 7 conditions		EURO 7 Extended conditions				
Amb. temperature [°C]		-7°C t	o 35°C		-10 to +45 C ⁽¹⁾				
Cold start	Test e	valuation fron weighting	n engine sta of cold start	Test ev n	Test evaluation from engine start on; no weighting of cold start				
Windows		90% (with + 100% (with	lower limit) n higher limi	,	As normal but Limits x 2 to cover all conditions				
Payload		0%-:	100%		0%-100%				
Max. altitude [m]		160	00 m		2200m				
Minimum km before testing		3.00	0 km		all				
Durability [km]		N2, N3<16t, N N3 > 16t:	N2	N2, N3<16t, M3: 700k km ⁽³⁾ N3 > 16t: 1,200k km					
100 Percentile Limit	NOx	SPN ₁₀	PM	CO	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	350	5.0E+11	12	3500	200	65	160	100	
HD 3 (as HD2+pre-heat)	175	5.0E+11	12	1500	75	65	160	85	
90 Percentile Limit	NOx	SPN10	PM	СО	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	90	1.0E+11	8	200	50	65	60	50	
HD 3 (as HD2+pre-heat)	90	1.0E+11	8	200	50	65	60	50	
"Budget" ≤ 3 x WHTC work	NOx	SPN_{10}	PM	СО	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	150	2.0E+11	10	1250	75	65	140	30	
HD 3 (as HD2+pre-heat)	100	2.0E+11	10	600	50	65	140	30	

AECC work on sustainable ICE for the future

- Demonstrate that technologies are available today to effectively control emissions from ICE under real-world operation towards near zero-impact on air quality
 - Updated <u>position paper</u> on Euro 7/VII available
 - Technical note based on test programme data to follow
- Promote the enhanced usage of sustainable renewable fuels to deliver on the EU Green Deal and accelerate the CO₂ reductions in the transition to climate-neutrality in 2050
 - LCA data shows the ICE with renewable fuel can achieve net-zero GHG emissions
 - Drop-in fuel capabilities allow to use existing infrastructure
 - \bigcirc Immediate reduction in CO₂ emissions from the legacy vehicle fleet as well as from new vehicles
 - Testing with sustainable renewable fuels included in AECC demonstration programmes

ASSOCIATI	N FOR EMISSIONS CONTROL BY CRAFIST
EU	RO 7/VII EMISSION STANDARDS
FOF	R CARS, VANS, BUSES AND TRUCKS
Posi	tion paper - June 2021
The E	ruropean emissions control industry that AECC represents today issues this updated AECC position paper on
Euro 7	/VII emission standards for cars, vans, buses and trucks. The aim is to further clarify the views of our industry
as wel	I as to consider some of the content presented by the CLOVE consortium to the recent meetings of the Advisory
Group	on Vehicle Emission Standards (AGVES).
A <u>first</u>	<u>position paper</u> ¹ on Euro 7/VII emission standards was released by AECC in July 2020. Since then AECC
contrib	uted with presentations in the AGVES meetings on 26 November 2020 and 24 February 2021. AECC also
sent a	n <u>open letter</u> ² on an ambitious Euro 7 and the uptake of sustainable renewable fuels in Internal Combustion
Engine	is (ICEs) on 24 March 2021.
AECC	remains committed to contribute to the discussion and development of ambitious Euro 7/VII real-world
emissi	ons standards. As a new contribution, please find herewith our updated AECC position on Euro 7/VII.
AE(CC supports an ambitious proposal for future Euro 7/VII emission legislations for light- and heavy-
dut	y vehicles. The Euro 7/VII is a key element of the Smart and Sustainable Mobility package under the
EU ⁷	s Green Deal. It should embrace an all-inclusive strategy in a technology neutral context ensuring
all p	powertrain technologies contribute to the EU's Green Deal long-term goals.
The E	uro 7/VII Regulation development is a unique opportunity within the Smart and Sustainable Mobility package
to ensi	ure truly clean vehicles on European roads, while minimising impact on the health of EU citizens and preserving
mobilit	y options for everybody's needs. An all-inclusive strategy should be embraced to enable all powertrain
techno	logies to contribute to the EU's Green Deal long-term goals. Advanced combustion engines within various

framework is needed to ensure this majority of the vehicle fleet is part of the solution

pur cities, to minimise health impacts as well as to mitigate climate cha

HD demonstrator vehicle and project partners

- Focus on on-road measurements
- Base vehicle description
 - MB Actros 1845 LS 4x2
 - € Engine OM 471
 - 2nd generation
 - Euro VI C certified
 - 12.8 litres, 6 cylinder in-line
 - High Pressure EGR
 - 450hp @ 1600rpm

Project partners

Automotive Grade Urea Sector Group

HD demonstrator emission control system

Catalysts and filter volumes from the AECC emissions control system installed on the truck
Combination of close-coupled and underfloor components
Components are hydrothermally aged targeting 500k km

FEV Diesel Powertrains 3.0 conference - 29-30 June 2021

Trip profiles for on-road testing

- Dedicated testing campaign to measure gaseous and particulate emissions under cold (-7°C) and hot (35°C) ambient conditions
- Investigate severe case conditions for cold start without ammonia stored on SCRs as well as with passively regenerated DPF
- Cover a wide range of driving conditions including urban, rural and motorway operation
- Preliminary results shown today contain emissions of NOx, SPN23, NH₃ and N₂O
- Further analysis is being completed on other trip profiles and pollutants including PN10

Challenging cycles for chassis dyno testing

¹ RWT – Real World Test

Ø

 \bigcirc

HD diesel demonstrator initial results on road vs. chassis dyno

- On-road ultra-low NOx emissions over a broad range of operating conditions
 - ISC (N3 Euro VI-C route) and urban delivery¹ trips were conducted with 10 and 50% payloads
 - Tests covered a range of ambient temperatures from 4°C to 11°C
- Additional JRC chassis dyno test² result show good correlation between on-road and lab test

¹ Urban delivery (<35km/h) with 10 stops (~1 min), total trip duration is ~1 hour and work completed is about 14-16kWh

 2 Urban delivery completed at JRC contained several stops (~1, 2 & 3 min). JRC chassis dyno test result shown on this graph was conducted with urea storage in the SCRs

The results are reported as measured under the specified test routes and conditions

Content presented at <u>42nd International Vienna Motor Symposium</u> with additional data from 1 test conducted at JRC

HD diesel demonstrator system preconditioning

System preconditioning

- DPF was also passively regenerated, until pressure differential was below a defined threshold
- SCR catalysts' ammonia storage was depleted prior to some of the tests conducted at the chassis dyno (until NOx EO = NOx TP)
- Ensure same starting conditions every time
- Investigate impact on gaseous and pollutant emissions at severe cold-start conditions

Results confirm low gaseous and particulate emission within broad range of driving conditions

99% of NOx emissions are produced within the cold start of the trip

- Temperature effect was investigated at -7, 23 & 35°C within an RWT^{1,2} trip containing urban, rural and motorway shares of operation
- Depending on the cold ambient conditions the NOx conversion efficiency of the system varies from 89 - 92% during cold-start

¹ All RWT conducted with 10% payload

² The results are reported as measured under the specified test routes and conditions

- A significant impact on cold start NOx emissions has been identified when SCR ammonia storage is depleted
- Resulting cumulative emissions are around 4.5 times higher when the system has been preconditioned, highest emission concentration during the first part of the trip

¹ WHVC tests were conducted with 50 % payload

² Urban delivery tests were conducted with 10 % payload

³ The results are reported as measured under the specified test routes and conditions

- Specific cycles were investigated for urban delivery with stops of duration 1, 2 and 3 minutes
- Length and frequency of stops will impact the emission control system performance, as well as the operation inbetween
- The effect is even greater when driving at cold ambient conditions (-7°C)

Chassis dyno test confirmed good control of NH₃ and relatively low N₂O
PN10 emissions are still being analysed, results will be available soon

¹ The results are reported as measured under the specified test routes and conditions

FEV Diesel Powertrains 3.0 conference - 29-30 June 2021

····· RWT COLD 35°C 10P

Ultra-low emissions diesel demonstrator

Objective

- Demonstrate ultra-low NOx emissions over wide range of driving conditions
- Tests on sustainable renewable fuels
 - Investigate low Well-to-Wheel CO₂ emissions
 - Paraffinic fuels (HVO, BTL, e-diesel)
 - FAME based (B30)
 - Validate pollutant emissions achieved on market fuel
- Demonstrator concept
 - Emission control system with combination of Lean NOx Trap and dual-Selective Catalytic Reduction
 - ♦ 48V mild-hybrid system

 J. Demuynck, et al.; "Integrated Diesel System Achieving Ultra-Low Urban and Motorway NOx Emissions on the Road", 40th Vienna Motor Symposium, 2019 <u>https://www.aecc.eu/wp-content/uploads/2019/04/190516-AECC-IAV-IPA-Integrated-Diesel-System-achieving-Ultra-Low-NOx-on-the-road-Vienna-Symposium.pdf</u>
Joint MTZ publication with Bosch, Vitesco, FEV and IAV <u>https://www.aecc.eu/wp-content/uploads/2020/09/200901-modern-diesel-MTZ.pdf</u>
Videos of instantaneous conversion performance available at <u>www.youtube.com/channel/UCbPS9op5ztLgrv6zIMH_IcQ</u>

Well-to-Wheel calculations to investigate CO₂ impact

- Tank-to-Wheel (tailpipe) measurements show similar results for the different fuels
- Significant Well-to-Wheel reduction versus B7 depending on production pathway

Advanced emission controls and renewable fuels for low pollutants and lifecycle CO₂ emissions, Sustainable Internal Combustion Engine Virtual 'Live', February 2021 <u>https://www.aecc.eu/wp-content/uploads/2021/02/210204-AECC-presentation-sustainable-ICE-conference-final.pdf</u>

▶ B30: -14 to -26%

• HVO: -60 to -82%

€ E-fuel: -93%

BTL: -64% to -200%

Low pollutant emissions confirmed for low carbon fuels

- Reference tests on B7 market diesel (7% fatty-acid-methyl-ester content)
- > Tests on renewable fuels without modification to vehicle hardware or software
 - 100% HVO (Hydrotreated Vegetable Oil)

Emission test average vehicle speed in km/h

Advanced emission controls and renewable fuels for low pollutants and lifecycle CO₂ emissions, Sustainable Internal Combustion Engine Virtual 'Live', February 2021 <u>https://www.aecc.eu/wp-content/uploads/2021/02/210204-AECC-presentation-sustainable-ICE-conference-final.pdf</u>

Summary and outlook

- AECC heavy-duty demonstrator vehicle project objective is to further reduce NOx and particulate emissions mainly observed in urban operation on Euro VI vehicles
 - Results show regulated and non-regulated emissions can be well controlled
 - Higher emissions are still found towards the boundary conditions of normal operation i.e. cold ambient conditions, long stops during urban operation
 - Follow-up activities will investigate EHC to further reduce initial cold-start emissions and validate ultra-low pollutant emissions on sustainable renewable fuels for low CO₂ emissions
- AECC light-duty diesel demonstrator showed significant WtW CO₂ reductions are possible with the use of sustainable renewable fuels while maintaining the ultra-low pollutant emissions
- AECC will continue to demonstrate that technologies are available today to effectively control emissions from ICE under real-world operation towards near zero-impact on air quality
- AECC looks forward to the Euro 7/VII proposal and Impact Assessment from the EU Commission

THANK YOU !

<u>www.aecc.eu</u> dieselinformation.aecc.eu

@AECC_eu
AECC (Association for Emissions Control by Catalyst)

AECC eu