
Ultra-low Emissions of a 48V Mild-Hybrid Gasoline Vehicle with Advanced Emission Control Technologies and System Control

<u>J. Demuynck</u>, P. Mendoza Villafuerte, D. Bosteels; AECC G. Randlshofer; IPA

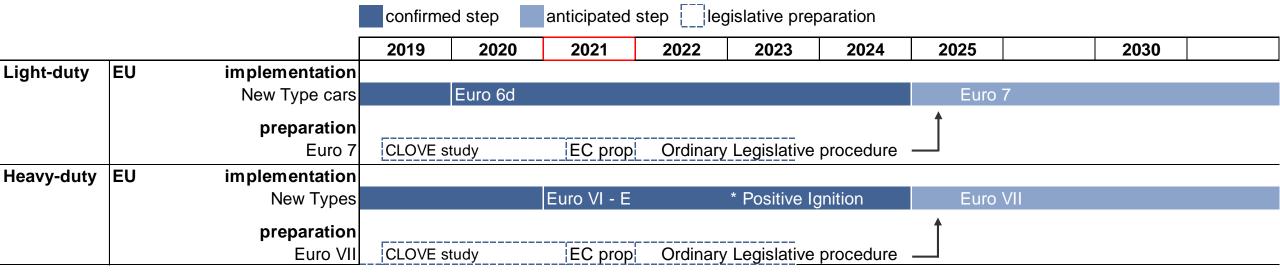
SAE 15th International Conference on Engines and Vehicles 14 September 2021

Gasoline emissions significantly reduced towards Euro 6d with advanced emission control systems

Sources: - ACEA/JAMA Euro 6d(-TEMP) PEMS data consulted 17 July 2020

- pre-RDE PN emissions factors from B. Giechaskiel, Int. J. Environ. Res. Public Health, 2018

Source: Audi


GPF

Emission legislation evolution expected towards Euro 7

The AGVES expert working group met until end of April 2021

CLOVE consortium

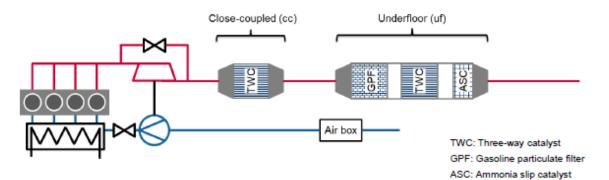
- Presented scenarios for light- and heavy-duty vehicles
- Will provide further input for the European Commission impact assessment
- The actual European Commission proposal is expected within 2021 followed by the ordinary legislative procedure with European Parliament and Council

emisic

LD gasoline demonstrator concept

- Base vehicle
 - C-segment vehicle
 - Engine
 - 1.5l with 4 cylinders
 - Variable valve train with cylinder deactivation
 - 48V mild-hybrid (belt-driven, P0 configuration)
 - Euro 6d type-approval baseline with GPF + TWC

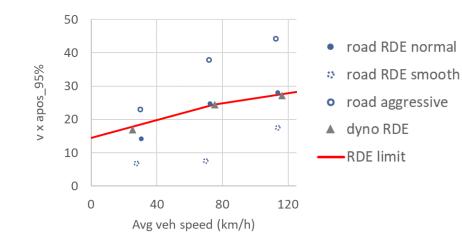
Project partners

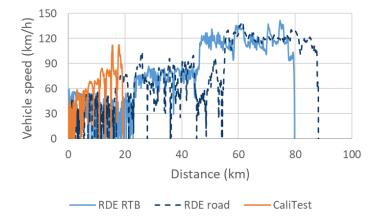


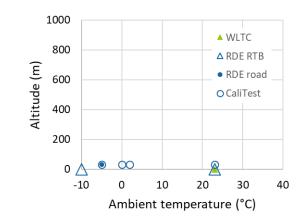
LD gasoline demonstrator concept

Emission control system

- ♦ ccTW and ufGPF + TWC + ASC
- CCTWC substrate with maximised surface area for enhanced cold-start performance
- ASC operation strategy for gasoline investigated in addition to improved lambda control
- Bench aged components targeting 160k km
- Two sets of calibration tested
 - Serial vehicle lambda control of ccTWC
 - Wideband lambda probe upstream
 - 2-step lambda probe downstream
 - Modification
 - Early closed-loop lambda control
 - Retarded spark timing

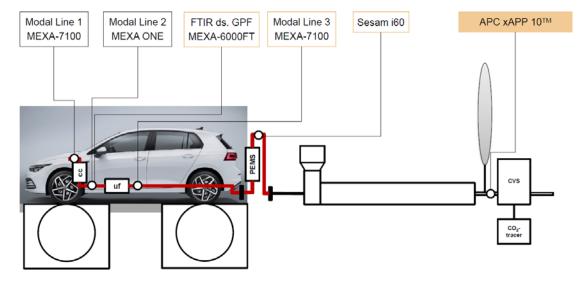

	cc TWC	uf cGPF	uf TWC	uf ASC
Diameter	4.66"	5.2"	5.2"	5.2"
Length	6"	4.72"	3. <mark>1</mark> 5"	2.36"
Cell density & wall thickness	900 cpsi x 2 mil	200 cpsi x 8 mil	600 cpsi x 2.5 mil	600 cpsi x 2.5 mil
Engine bench aged as a system targeting 160,000 km				

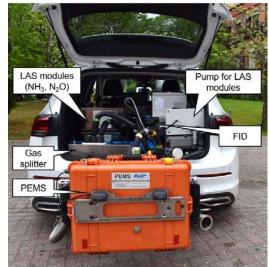

LD gasoline demonstrator data


Tests conducted to characterise the emission performance

- Road
 - RDE ~90 km
 - Calibration test (CaliTest) ~20 km
- Chassis dyno
 - WLTC
 - RDE aggressive
- Exploring beyond Euro 6 RDE boundary conditions for
 - Ambient temperature

Driving style

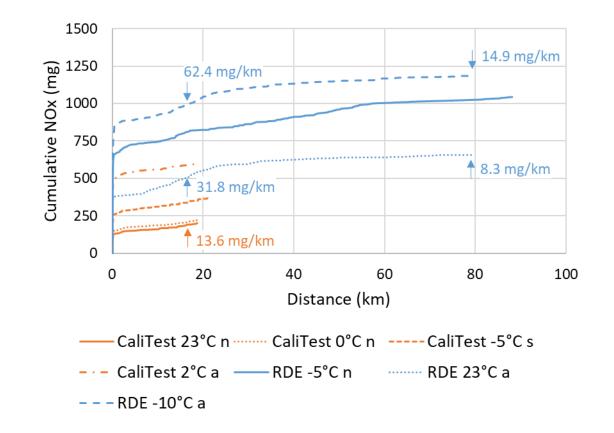




LD gasoline demonstrator data

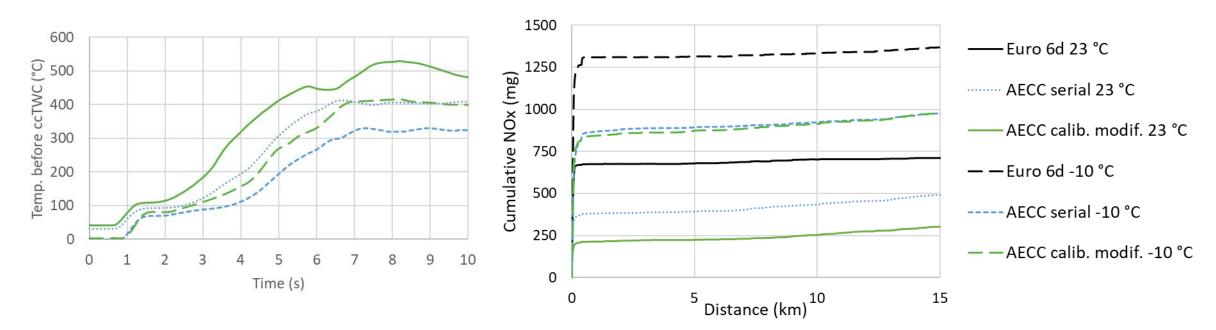
Instrumentation

- Chassis dyno
 - 3x sample points
 - includes 2x FTIR and PN10
- Road
 - PEMS
 - Prototype for NH_3 , N_2O and PN10



NOx emissions

- Near-zero emissions under warm operation independent from test conditions
- ♦ Initial cold-start emissions impacted by
 - € ambient temperature
 - Oriving dynamics

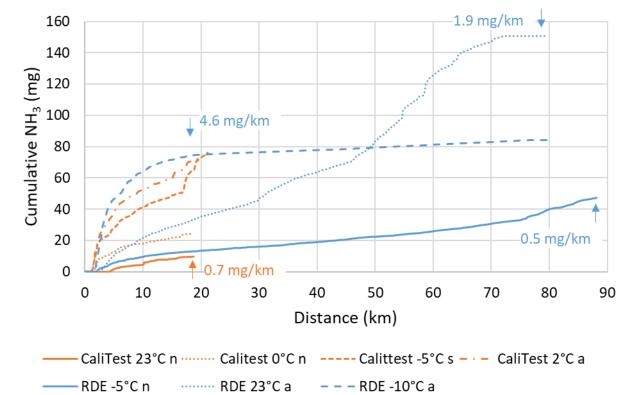

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

² Urban values are evaluated at a trip length of 16 km

NOx emissions

- Effect of calibration modification
 - ♦ TWC light-off achieved ~1 second earlier
 - ♦ Reduction in initial cold-start peak at 23 °C, but limited effect at -10 °C

¹ The results are reported as measured by the PEMS under the specified test routes and conditions


 $^{\rm 2}$ Urban values are evaluated at a trip length of 16 km

NH₃ emissions

♦ ASC operation strategy for gasoline investigated in addition to improved lambda control

- Storage functionality captures emissions during first 1-3 km
- Emissions increase under aggressive driving style but remain significantly below 10-40 mg/km reported for Euro 6 vehicles³⁻⁴

- ¹ The results are reported as measured by the PEMS under the specified test routes and conditions
- ² Urban values are evaluated at a trip length of 16 km
- ³ R. Suarez-Bertoa, et al.; Transp. Res. Part D Transp. Environ. 49 (2016) 259-270
- ⁴ R. Suarez-Bertoa, et al.; Atmospheric Environment 166 (2017) 488-497

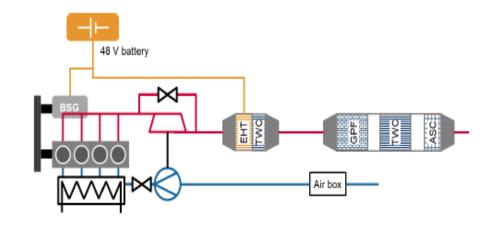
PN10 emissions

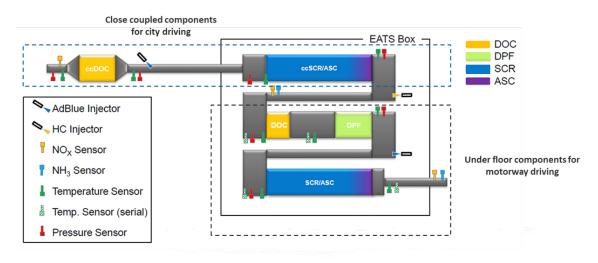
- Soot and ash accumulation during ageing of parts supports filtration efficiency
- Initial cold-start effect is observed
- Near-zero emissions during the rest of the tests

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

² Urban values are evaluated at a trip length of 16 km

Summary


- Combination of close-coupled and underfloor components is implemented on a LD gasoline demonstrator vehicle to investigate
 - Early light-off for urban emission control
 - Consistent emissions reduction over the range of driving conditions
- Combination of tests conducted to characterise the emission performance
- ♦ Ultra-low emissions measured for range of driving conditions
 - Initial cold-start effect impacted by ambient temperature and driving dynamics
 - Near-zero emissions throughout rest of the test



Outlook

- ♦ 2021 follow-up activities for LD gasoline
 - Implementation of electrically heated catalyst to reduce the remaining initial cold-start emissions
 - Evaluation of a fresh GPF
 - Testing of renewable fuels with drop-in capabilities to investigate Well-to-Wheel CO₂ reductions
- Similar investigations ongoing for HD diesel

THANK YOU !

<u>www.aecc.eu</u> dieselinformation.aecc.eu

AECC (Association for Emissions Control by Catalyst)

AECC eu

1

@AECC_eu