POWERTRAINS, FUELS AND LUBRICANTS DIGITAL SUMMIT

SEPTEMBER 28-30, 2021 Online & On-Demand sae.org/pfl

Executive Leadership Provided By: achatespower

Ultra-Low NOx Emissions with a Close-Coupled Emission Control System on a Heavy-duty Truck Application

Pablo Mendoza Villafuerte, Joachim Demuynck, Dirk Bosteels

AECC AISBL

Patrick Recker, Thomas Wilkes, Lynzi Robb

FEV Europe GmbH

- Introduction
 - Euro 7/VII process
- Heavy-duty Diesel Ultra-low emissions demonstrator

• Summary and outlook

Euro 7/VII process

- The AGVES expert working group met until end of April 2021
- CLOVE consortium studies expected to finish by Q2/2021
 - Scenarios presented for light- and heavy-duty vehicles
 - Will provide further input for the European Commission impact assessment
- The European Commission proposal is expected within 2021 followed by trialogue negotiations with European Parliament and Council

Euro 7/VII process

- CLOVE scenarios for heavy-duty vehicles
 - Testing conditions
 - Emission limits for normal conditions for HD diesel assessment
 - Combination of cold-start budget with Moving Average Window (MAW) values for 90th and 100th percentile
 - For 300/700k km, further deterioration factors for 700/1200k km are being evaluated by CLOVE

Parameter	EURO 7 Normal conditions					EURO 7 Extended conditions			
Amb. temperature [°C]		-7°C to 35°C				-10 to +45 C (1)			
Cold start	Test evaluation from engine start on; no weighting of cold start				Test ev n	Test evaluation from engine start on; no weighting of cold start			
Windows	90% (with lower limit) + 100% (with higher limit)				,	As normal but Limits x 2 to cover all conditions			
Payload	0%-100%					0%-100%			
Max. altitude [m]	1600 m					2200m			
Minimum km before testing	3.000 km					all			
Durability [km]	N2, N3<16t, M3: 700k km ⁽³⁾ N3 > 16t: 1,200k km				N2	N2, N3<16t, M3: 700k km ⁽³⁾ N3 > 16t: 1,200k km			
100 Percentile Limit	NOx	SPN ₁₀	PM	со	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	350	5.0E+11	12	3500	200	65	160	100	
HD 3 (as HD2+pre-heat)	175	5.0E+11	12	1500	75	65	160	85	
90 Percentile Limit	NOx	SPN10	PM	со	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	90	1.0E+11	8	200	50	65	60	50	
HD 3 (as HD2+pre-heat)	90	1.0E+11	8	200	50	65	60	50	
",Budget" \leq 3 x WHTC work	NOx	SPN_{10}	PM	со	NMOG	NH3	N2O*	CH4*	
HD 2 (opt. +cc SCR diesel)	150	2.0E+11	10	1250	75	65	140	30	
HD 3 (as HD2+pre-heat)	100	2.0E+11	10	600	50	65	140	30	

HD demonstrator vehicle and project partners

- Base vehicle description
 - MB Actros 1845 LS 4x2
 - Euro VI C certified
 - Engine OM 471, 2nd generation
 - 12.8 liter, 6 cylinder in-line
 - High Pressure EGR
 - 450hp @ 1600rpm
- Project partners

Automotive Grade Urea Sector Group

HD demonstrator vehicle concept: emissions control technologies

- ccDOC + ccSCR/ASC + DOC + cDPF + ufSCR/ASC
 - Better integration of proven emission reduction technology in a commercially feasible manner
 - Hydrothermal aged components targeting 500k km

AECC HD demonstrator video can be seen at: https://www.youtube.com/watch?v=MXBnhZMzISY DOC: Diesel Oxidation Catalyst SCR: Selective Catalytic Reduction DPF: Diesel Particulate Filter ASC: Ammonia Slip Catalyst

HD demonstrator vehicle PEMS campaign

- On-road test campaign to measure gaseous and particulate emissions a broad range of driving conditions
- Investigate urban delivery trips varying the duration of the stops (1, 2 and 3-min in idle)
- Cover a wide range of driving conditions including urban, rural and motorway operation

Challenging cycles for on-road testing

- T_{amb}: 4 to 8 °C
- Payload: 10 & 50 %

- T_{amb}: 8 to 10 °C
- Payload: 10 %

SAE 2021-01-1228

Ultra-low NOx achieved in urban operation

- Integrated system including close-coupled catalysts and heating measures ensure quick heat up of the emission control system
- Ultra-low NOx emissions are feasible over a broad range of operating conditions^{1,2,3}

¹ Urban delivery (<50 km/h) with stops (varying from 1-3 min duration), total trip duration is ~1 hour and work completed is about 23-25 kWh

² ISC N3 Euro VI route

³ The results are reported as measured under the specified test routes and conditions and cover a range of ambient temperatures from 4-10 °C

SAE International®

Powertrain, Fuels and Lubricants Digital Summit

SAE 2021-01-1228

Cold start NOx emissions remaining challenge

- NOx results^{1,2,3} show that cold-start remains the main emission event
- The close-coupled catalysts result in a shortened heat-up time of the system
- Emissions are well controlled once the system is warm

- ¹ Urban delivery (<50 km/h) with stops (varying from 1-3 min duration), total trip duration is ~1 hour and work completed is about 23-25 kWh
- ² ISC N3 Euro VI route
- ³ The results are reported as measured under the specified test routes and conditions and cover a range of ambient temperatures from 4-10 °C

SAE International®

Powertrain, Fuels and Lubricants Digital Summit

PN10 emissions are impacted by temperature and payload

- Low PN10 achieved within broad range of driving conditions
- Most PN10 emissions are produced within the cold-start of the trip
- Tests are not covering all possible critical conditions for PN

¹ Urban delivery (<50 km/h) with stops (varying from 1-3 min duration), total trip duration is ~1 hour and work completed is about 23-25 kWh

² ISC N3 Euro VI route

³ The results are reported as measured under the specified test routes and conditions and cover a range of ambient temperatures from 4-10 °C

SAE International®

Powertrain, Fuels and Lubricants Digital Summit

SAE 2021-01-1228

Low N₂O and NH₃ emissions within broad range of operation

- Low N₂O during high NOx conversion operation
- Near-zero NH_3 emissions in a broad range of operating conditions

Summary and outlook

- Ultra-low NOx emissions are technically feasible in a broad range of driving conditions thanks to the close-coupled catalysts and heating measures implemented on the truck
- The innovative emissions control system layout integrates proven emission reduction technology in a commercially feasible manner
- Results show low non-regulated emissions can be achieved
- AECC continues to demonstrate technologies are available today to effectively control emissions from ICEs under real-world operation
- Follow-up activities will investigate EHC to further reduce initial cold-start emissions
- Validate ultra-low pollutant emissions on sustainable renewable fuels for low CO₂ emissions

Pablo Mendoza Villafuerte

AECC AISBL

Bd. Auguste Reyers80, 1030 Brussels

+3227068164

Pablo.Mendoza-Villafuerte@aecc.eu

in

AECC (Association for Emissions Control by Catalyst)

AECC eu