Ultra-low NOx and PN with integrated emission control systems for light-duty gasoline and heavy-duty diesel vehicles

Dr. Pablo Mendoza Villafuerte

Powertrain Systems for Net-Zero Transport

IMechE Conference • 08 December 2021

Association for Emissions Control by Catalyst (AECC AISBL)

AECC members: European Emissions Control companies

- Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles, and non-road mobile machinery
 - AECC is # 78711786419-61 in EU Transparency Register and has consultative status with the UN Economic and Social Council (ECOSOC)

Advanced emission control systems for light- and heavy-duty

- ▶ LD Gasoline introduction of ▶ LD Diesel combination of Gasoline Particulate Filter
- deNOx technologies
- - of system with close-coupled components Perforated plate NO_x sensor Components in the underbody SCR catalytic converter

▶ HD Diesel – announcement

Emission legislation evolution expected towards Euro 7

The AGVES expert working group met until end of April 2021

Presented scenarios for light- and heavy-duty vehicles

Provided further input for the European Commission impact assessment

◆ The actual European Commission proposal is expected in begin 2022

followed by the ordinary legislative procedure with European Parliament and Council

		confirmed step anticipated steplegislative preparation									
			2019	2020	2021	2022	2023	2024	2025	2030	
Light-duty	EU	implementation									
		New Type cars	Euro 6d						Euro 7		
		preparation									
		Euro 7	CLOVE s	tudy	EC prop	Ordinar	y Legislative	procedure			
Heavy-duty	EU	implementation									
		New Types		Euro VI - E			* Positive Ig	gnition	Euro VII		
		preparation							†		
		Euro VII	CLOVE s	tudy	EC prop	Ordinar	y Legislative	procedure			

LD gasoline demonstrator concept

- Base vehicle
 - C-segment vehicle
 - 1.5l engine with 4 cylinders
 - ◆ Variable valve train and cylinder deactivation
 - ◆ 48V mild-hybrid (belt-driven, P0 configuration)
 - Euro 6d type-approval baseline with GPF + TWC
- AECC emission control system
 - Occ TWC, uf cGPF+TWC+ASC
 - ◆ Bench aged components targeting 160k km
- Instrumented with prototype PEMS to measure CO₂, NOx, CO, THC, PN10, NH₃ and N₂O

LD gasoline demonstrator data

- Tests conducted to characterise the emission performance
 - Road
 - RDE ~90 km
 - Calibration test (CaliTest) ~20 km
 - Chassis dyno
 - WLTC
 - RDE aggressive
- Exploring beyond Euro 6 RDE boundary conditions for
 - Ambient temperature
 - Driving style

NOx emissions

- Near-zero emissions under warm operation independent from test conditions
- Initial cold-start emissions impacted by
 - ambient temperature
 - driving dynamics

²Urban values are evaluated at a trip length of 16 km

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

NOx emissions – Calibration modification

- Applied changes
 - ◆ Early closed-loop lambda control
 - Retarded spark timing
- Observations
 - ◆ TWC light-off achieved ~1 second earlier
 - Reduction in initial cold-start peak at 23 °C, but limited effect at -10 °C

PN10 emissions

- Soot and ash accumulation during ageing of parts supports filtration efficiency
- Initial cold-start effect is observed
- Near-zero emissions during the rest of the tests

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

²Urban values are evaluated at a trip length of 16 km

NH₃ emissions

- ASC operation strategy for gasoline investigated in addition to improved lambda control
 - Storage functionality captures emissions during first 1-3 km
 - Emissions increase under aggressive driving style but remain significantly below 10-40 mg/km reported for Euro 6 vehicles³-⁴

¹ The results are reported as measured by the PEMS under the specified test routes and conditions

⁴ R. Suarez-Bertoa, et al.; Atmospheric Environment 166 (2017) 488-497

² Urban values are evaluated at a trip length of 16 km

³ R. Suarez-Bertoa, et al.; Transp. Res. Part D Transp. Environ. 49 (2016) 259-270

HD demonstrator concept

- Base vehicle description

 - Engine OM 471
 - Euro VI C certified
 - 12.8 litres, 6 cylinder in-line
 - High Pressure EGR
- AECC emissions control system
 - Components are hydrothermally aged targeting 500k km
- Instrumented with prototype PEMS to measure CO₂, NOx, CO, PN10, NH₃ and N₂O

HD diesel demonstrator testing

Overview of testing conditions on the chassis dyno and on-road

On-road ISC
Chassis dyno RWT

Urban delivery

№ WHVC¹

¹ The WHVC emission test results are also available but not included in this presentation as results are in-line to what has been observed on the other trip profiles

HD diesel demonstrator overall results

- On-road and chassis dyno test campaigns^{1,2} confirm significant improvement for urban emissions including cold-start compared to Euro VI-D
- Near-zero emissions under warm operation
- Impact of ammonia storage depletion procedure shows robust control is needed for AdBlue® dosing, ammonia storage and thermal management

¹ P. Mendoza Villafuerte, et al.; "Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control on a Heavy-duty Truck Application", 42nd Vienna Motor Symposium 2021, https://www.aecc.eu/wp-content/uploads/2021/05/210219 Vienna HD-diesel-AECC-FEV-paper-final v2.pdf

² P. Mendoza Villafuerte, et al.; "Ultra-Low NOx Emissions with Close-Coupled Emission Control System on a Heavy-duty Truck Application", 30th Aachen Colloquium Sustainable Mobility 2021, https://www.aecc.eu/wp-content/uploads/2021/10/32 C3.3 Mendoza-Villafuerte AECC.pdf

Cold-start NOx emissions remaining challenge

- NOx results^{1,2,3} show that cold-start remains the main emission event
- The close-coupled catalysts result in a shortened heat-up time of the system
- Emissions are well controlled once the system is warm

³ The results are reported as measured under the specified test routes and conditions and cover a range of ambient temperatures from 4-10 °C

¹ Urban delivery (<50 km/h) with stops (varying from 1-3 min duration), total trip duration is ~1 hour and work completed is about 23-25 kWh

² ISC N3 Euro VI route

PN10 emissions are impacted by temperature and payload

- Low PN10 achieved within broad range of driving conditions
- Most PN10 emissions are produced within the cold-start of the trip
- Tests are not covering all possible critical conditions for PN

Low N₂O and NH₃ emissions in a broad range of operations

- Low N₂O during high NOx conversion operation
- Near-zero NH₃ emissions in a broad range of operating conditions.

Outlook

- Light-duty vehicle project scope extension

 - Evaluation of fresh GPF
 - ◆ Testing on Blue Gasoline and e-gasoline to validate low pollutant emissions including WtW CO₂ emissions¹
- Heavy-duty vehicle project scope extension

 - **♦** Simulation of combined NOx and CO₂ reduction
 - ◆ Testing on HVO and e-diesel to validate low pollutant emissions including WtW CO₂ emissions

¹ Joint publication with Concawe https://www.aecc.eu/wp-content/uploads/2021/11/sustainability-13-12711.pdf

Summary

- Low pollutant emissions over wide range of driving conditions shown with the use of advanced emission control systems
 - Light-duty gasoline car
 - ♦ Heavy-duty diesel truck
- Significant reductions of Well-to-Wheel CO_2 emissions are possible with the use of sustainable renewable fuels. Emission control technologies fully operating in combination with drop-in sustainable renewable fuels enable ultra-low pollutant emissions and contribute towards net-zero CO_2 emissions.
- ▶ Internal Combustion Engine is part of the solutions to contribute to EU Green Deal goals towards 2050 along with electrification

THANK YOU!

www.aecc.eu
dieselinformation.aecc.eu

