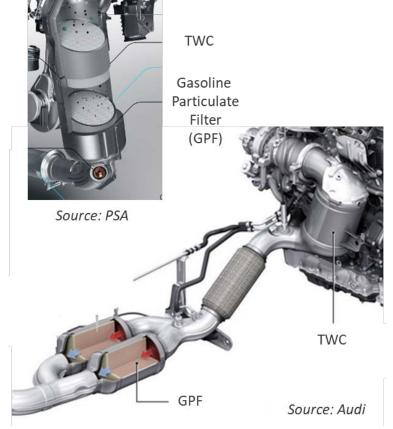
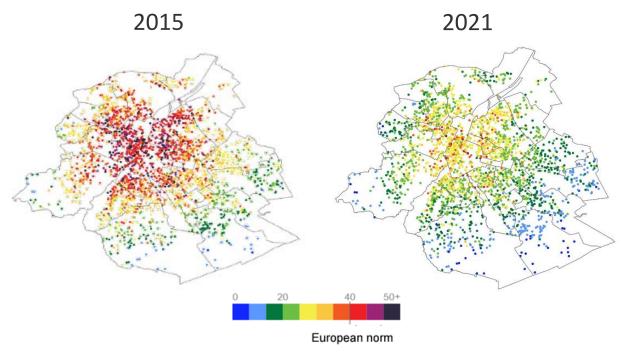
Zero-impact emissions from a gasoline car with advanced emission controls and e-fuels


J. Demuynck, P. Mendoza Villafuerte, D. Bosteels, AECC AISBL M. Pannwitz, T. Tietze, M. Sens, IAV GmbH J. Williams, A. Bouet, C. Chaillou, Aramco Overseas Company


43rd International Vienna Motor Symposium • 28 April 2022

Euro 6d significantly reduced impact on air quality

- LD Gasoline introduction of particulate filter
- Several reports about improved air quality
- **Example of NO₂ in Brussels**

Source: CurieuzenAir report air quality in Brussels, 2022

Emission legislation evolution expected towards Euro 7

- Further contribute to air quality improvement with advanced emission control systems.
 - New WHO guidelines, published in September 2021
 - Review of EU Ambient Air Quality Directive ongoing
- European Commission proposal for Euro 7 is expected by July 2022.
- Assumptions for light-duty vehicles based on April 2021 scenarios from the CLOVE consortium
 - Pollutant emission limits
 - Tightening for regulated pollutants
 - Introduction of limit for currently non-regulated pollutants
 - Widening of RDE testing conditions, with definition of normal and extended area
 - Ambient conditions
 - Driving dynamics
 - Reduction of minimum trip length for averaging of initial cold-start emissions
 - Extension of durability requirements

Reduction of ICE CO₂ emissions to mitigate climate change

- Increase in efficiency and level of electrification for new vehicles
- Wider usage of sustainable renewable fuels to reduce Well-to-Wheel and lifecycle emissions
 - Immediate reductions for the existing fleet in addition to new vehicles.
 - Production is a reality, further investments depending on the policy framework
 - Usage for road transport is not fully recognised in 'Fit for 55' proposal under discussion

03.05.2021 | Image | #Powertrain systems Source: Bosch (2021) Blue Gasoline with 20 percent lower CO₂ emissions

Synthetic diesel and gasoline

Source: Aramco (2021)

Two 50 BPD fuel pilot plants 80% CO₂ abatement compared to fossil

Haru Oni pilot plant: wind power to e-fuel

Source: Siemens Energy (2020)

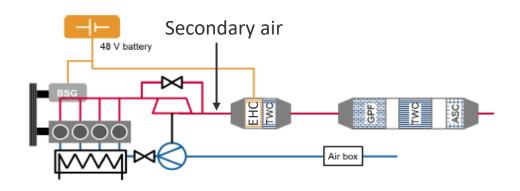
Agenda

- ▶ LD gasoline demonstrator concept
- Ultra-low pollutant emissions on market E10 fuel
 - NOx and THC
 - **PN10**
 - NH₃
- Ultra-low pollutant emissions and Well-to-Wheel CO₂ emissions on sustainable renewable fuels
- Summary and conclusion

LD gasoline demonstrator concept

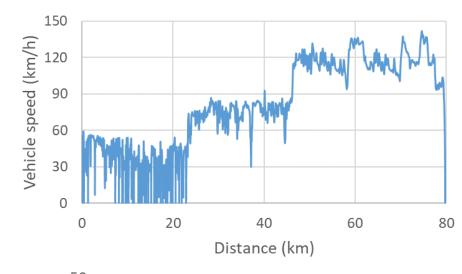
- Base vehicle
 - C-segment vehicle
 - 1.5l engine with 4 cylinders
 - ◆ Variable valve train and cylinder deactivation
 - ◆ 48V mild-hybrid (belt-driven, P0 configuration)
 - **●** Euro 6d type-approval baseline: cc cGPF + uf TWC

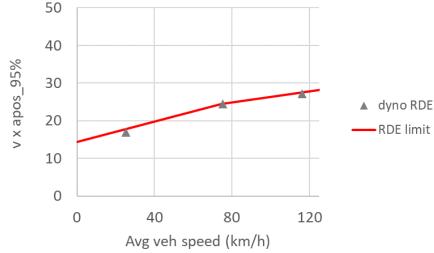
- AECC emission control system
 - ◆ Phase 1: cc TWC, uf cGPF+TWC+ASC
 - ◆ Phase 2: cc EHC|TWC, uf cGPF+TWC+ASC
 - Bench aged components targeting 160k km



EHC control strategy

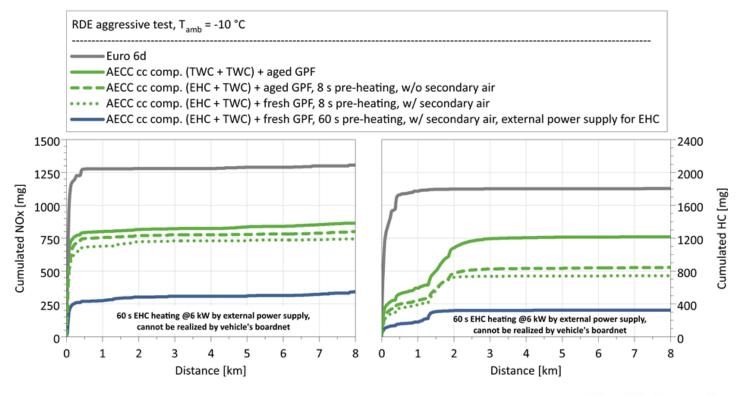
- Pre- and post-heating
 - 8 s pre-heating
 - **●** 60 s pre-heating as outlook to advanced hybrids
- Secondary air in exhaust manifold to enhance heat transfer within catalyst during pre-heating phase in some tests





LD gasoline demonstrator testing

- Work presented focuses on RDE test on the chassis dyno
 - ◆ At ambient temperature of 23 °C and -10 °C
 - Challenging drive-off
 - 4s initial idle
 - 1st acceleration immediately to 60 km/h
 - ♦ Vxa_{pos} at Euro 6 RDE boundary condition
- Repeated on different fuels
 - **E**10 reference
 - Blue Gasoline
 - Methanol-to-Gasoline e-gasoline



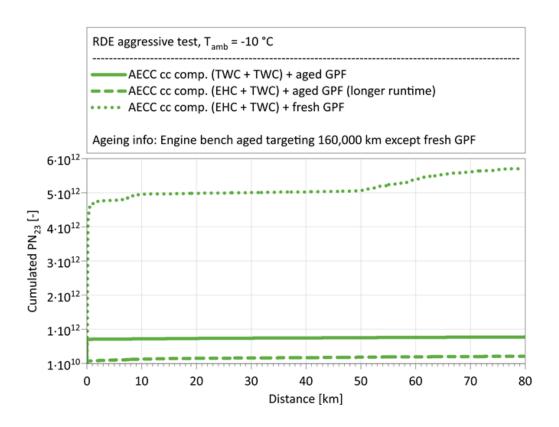
Ultra-low initial cold-start emissions

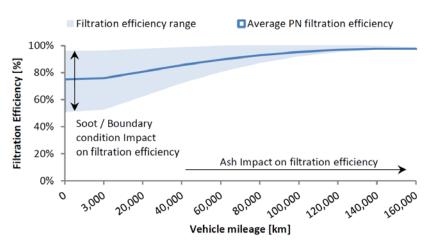
- ♦ 8 s pre-heating: similar NOx emissions compared to cc(TWC+TWC), some reduction for THC
- 60 s pre-heating as outlook to advanced hybrid: significant reduction for NOx and THC
- Near-zero emissions after initial cold-start peak over range of conditions tested

Engine catalyst

heating

EHC

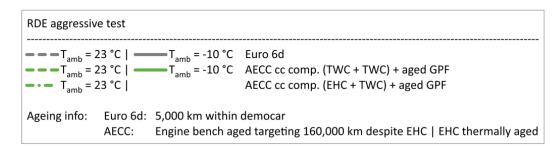

heating

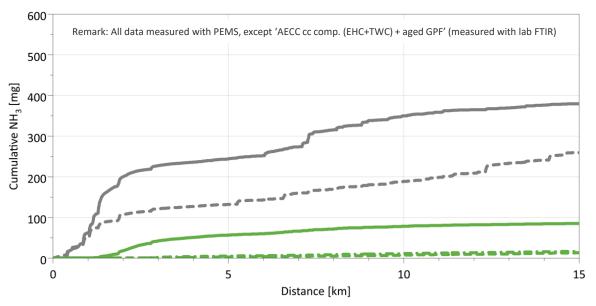

Closed-loop lambda

control

Ultra-low PN10 emissions

- > Variation in cold-start peak for aged parts depends on exact soot/ash level
- Initial cold-start peak increases with fresh GPF

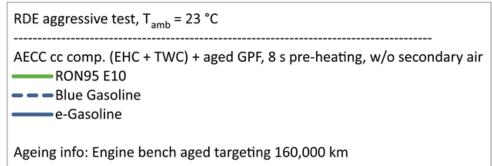

Source: D. Waters, et al.; 8th Int. Engine Congress Baden-Baden, 2021

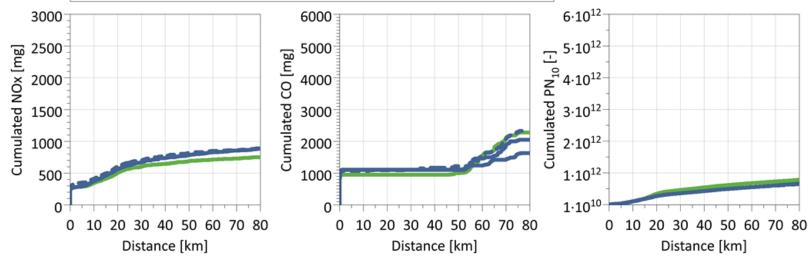


Ultra-low NH₃ emissions

- Euro 6d level within 10-40 mg/km range reported by JRC¹⁻²
- ASC operation strategy for gasoline investigated in addition to improved lambda control
 - Emissions increase under aggressive driving style and at low ambient temperature
 - Significant reduction compared to Euro 6d

² R. Suarez-Bertoa, et al.; Atmospheric Environment 166 (2017) 488-497

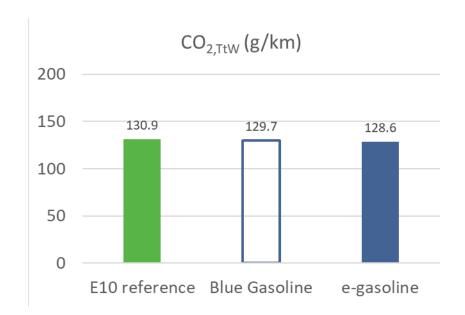


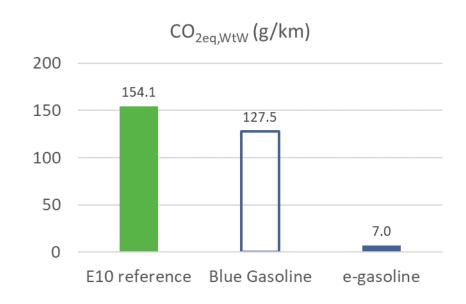


¹ R. Suarez-Bertoa, et al.; Transp. Res. Part D Transp. Environ. 49 (2016) 259-270

Ultra-low emissions on sustainable renewable fuels

- Similar gaseous and particulate emissions
 - Blue Gasoline
 - e-gasoline





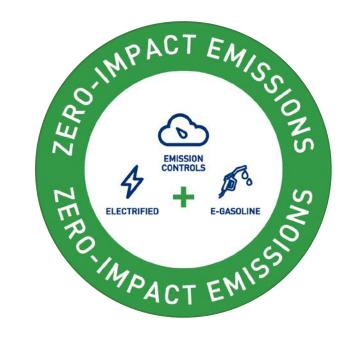
Well-to-Wheel CO₂ emission reduction

- Similar tailpipe CO₂ emissions
- Delue Gasoline already offers today significant reduction of 17% (20% compared to E0)
- E-gasoline has the potential to nearly eliminate Well-to-Wheel CO₂ emissions

Calculated according to methodology of JEC WtW report v5

Summary and conclusions

- Advanced emission control system was implemented on a gasoline demonstrator vehicle with a 48 V mild-hybrid powertrain, including among other items
 - Olose-coupled TWC substrate with 900 cpsi
 - Active thermal management with EHC
 - Ammonia Slip Catalyst operation in addition to improved lambda control
- Ultra-low pollutant emissions measured
 - Significant reduction of initial cold-start peak compared to already low Euro 6d level
 - Near-zero emissions after initial cold-start peak
- Same ultra-low pollutant emissions measured on sustainable renewable fuels, which enable to significantly reduce the Well-to-Wheel CO₂ emissions



Summary and conclusions

Demonstration of zero-impact emissions through an integrated approach

Meet us at the car display in front of The Hofburg to experience this while driving

THANK YOU!

www.aecc.eu

@AECC eu

AECC (Association for Emissions Control by Catalyst)

