

COMBINATION OF ADVANCED EMISSION CONTROL TECHNOLOGIES AND SUSTAINABLE RENEWABLE FUELS ON A LONG-HAUL DEMONSTRATOR TRUCK

- D. Bosteels, P. Mendoza Villafuerte, J. Demuynck, AECC AISBL
- T. Wilkes, FEV Europe GmbH
- C. Chaillou, Aramco Overseas Company
- M. Hultman, NESTE

Euro VI-D/E significantly reduced impact on air quality

- Implementation of advanced emission control systems
- Several reports about improved air quality, for example NO₂ in Brussels
- Further emission control technology evolution expected towards Euro 7

Source: Daimler 2022

Source: Cummins, 2021

Source: CurieuzenAir report air quality in Brussels, 2022

Reduction of CO₂ emissions to mitigate climate change

- Increase in efficiency and level of electrification for new vehicles
- Wider usage of sustainable renewable fuels to reduce Well-to-Wheel and lifecycle CO₂ emissions
 - ▶ Immediate reductions for the existing fleet in addition to new vehicles
 - Production is a reality, further investments depending on the policy framework
 - ◆ Usage for road transport is not fully recognised in 'Fit for 55' proposal under discussion

Neste MY renewable diesel launched in Belgium

Source: Neste (2021)

Synthetic diesel and gasoline

Source: Aramco (2021)

Two 50 BPD fuel pilot plants 80% CO₂ abatement compared to fossil

Haru Oni pilot plant: wind power to e-fuel

Source: Siemens Energy (2020)

HD Diesel demonstrator concept

- Base vehicle description

 - Engine OM 471
 - Euro VI C certified
 - 12.8 litres, 6 cylinder in-line
 - High Pressure EGR
- Instrumented with prototype PEMS equipment to measure CO₂, NOx, CO, PN10, NH₃ and N₂O

HD Diesel demonstrator concept

- AECC emissions control system
 - ◆ Phase 1: ccDOC, ccSCR/ASC+ ufDOC+cDPF+ SCR/ASC, twin AdBlue dosing and HC doser
 - Phase 2: additional EHC as part of the ccDOC
 - Components are hydrothermally aged targeting 500k km

HD Diesel demonstrator overall phase 1 NOx results

- On-road and chassis dyno test campaigns confirm significant improvement for urban emissions including cold-start compared to Euro VI-D
- Near-zero emissions under warm operation
- Impact of ammonia storage depletion procedure shows robust control is needed for AdBlue® dosing, ammonia storage and thermal management

¹ P. Mendoza Villafuerte, et al.; "Real-World Emissions of Euro VI Heavy-Duty Vehicles", SAE Technical paper, 2021-01-5074, 2021

³ T. Selleri, et al.; "Measuring Emissions from a Demonstrator Heavy-Duty Diesel Vehicle under Real-World Conditions—Moving Forward to Euro VII", Catalysts 2022, 12(2), 184, 2022

² P. Mendoza Villafuerte, et al.; "<u>Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control on a Heavy-duty Truck Application</u>", 42nd Vienna Motor Symposium 2021

Phase 2 of the HD Diesel demonstrator project

- Implementation of electrically heated catalyst as part of the ccDOC to reduce the remaining initial cold-start emissions
- Operation strategy
 - AdBlue dosing starts when ccSCR reaches 200°C, EHC helps reducing the heat up time
 - System is kept at operating temp regardless of long stops
- As the vehicles is not a hybrid, the required power needed for the EHC was generated by a genset installed in the trailer

Reduction of initial cold-start emissions with EHC

- NOx emissions reduced by 60-77% with EHC compared to project phase 1
 - ◆ Faster heat-up during initial cold-start
 - Maintaining temperature during low-load or start-stop driving

Ultra-low NOx emissions on sustainable renewable fuels

- The HD demonstrator vehicle was tested under the same routes for urban delivery and in-service conformity with sustainable renewable fuels
 - 100% HVO (within phase 1)
 - E-diesel (within phase 2)
- No negative impact was observed on the ultra-low pollutant emissions level

¹ Tests were conducted with empty SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise

Non-regulated emissions with sustainable renewable fuels

- Low PN10 emissions confirmed on HVO and e-diesel
- N₂O emissions showed similar levels as with conventional fuel

¹ The results are reported as measured by protype PN10 PEMS

² Tests were conducted with empty SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise

HD Diesel demonstrator Well-to-Wheel CO₂ emissions

- JEC Well-To-Wheel report version 5 methodology has been used to calculate the WtW CO₂ emissions
 - Well-to-Tank (WtT) input data is coming from the JEC WtW report
 - ▶ Tank-to-Wheel input data is from the on-road testing performed and fuel properties provided by the fuel suppliers
- Following pathways are investigated
 - ▶ B7 market diesel
 - NO
 - EU mix
 - Waste cooking oil
 - **E**-diesel

HD Diesel demonstrator Well-to-Wheel CO₂ emissions

- HVO already offers today significant reduction of up to 90% WtW CO₂ reduction straight from the pump depending on the feedstock
- ◆ E-diesel has the potential to nearly eliminate WtW CO₂ emissions.

Summary and conclusions

- Advanced emission control system implemented on a heavy-duty demonstrator vehicle, including close-coupled catalyst and active thermal management
- Ultra-low pollutant emissions measured on market fuel
 - Significant reduction of initial cold-start peak and emissions under low-load operation
 - Near-zero emissions after initial cold-start peak
- Results validated on sustainable renewable fuels
 - Ultra-low pollutant emissions confirmed
 - **○** Well-to-Wheel analysis shows significant CO₂ emissions reduction
- ◆ The internal combustion engine is part of the solution for meeting the EU Green Deal climate-neutral and zero-emission goals in 2050 along with electrification

THANK YOU FOR YOUR ATTENTION

