Ultra-Low Emissions from a Truck with Close-Coupled Emission Control System and Active Thermal Management using e-Fuels

<u>Dr P. Mendoza Villafuerte</u>; Dr J. Demuynck; MSc MBA D. Bosteels Association for Emissions Control by Catalyst (AECC aisbl), Brussels

Dipl.-Ing T. Wilkes; MSc V. Mueller; Dr P. Recker FEV Europe GmbH, Aachen

12th Aachen Colloquium China 2022 • 17-18 November 2022

Content

- Euro 7 for heavy-duty vehicles
- ◆ AECC results of the heavy-duty demonstrator programme
- Summary

Euro 7 emission standards proposal in context

Euro 7 proposal for trucks & buses

- European Commission adopted the Euro 7 proposal on 10 November 2022
- Fuel-neutral limits
 - **②** Emissions budget for trips < 3x WHTC
 - Extended conditions: limit x 2
 - No multiplier for additional lifetime
 - NOx idle limit, in case engine does not shut down after 300 sec of continuous idling operation: 5000 mg/h

	Cold emissions (MAW100) (/kWh)	Hot emissions (MAW90) (/kWh)	Emissions budget for trips less than 3xWHTC (/kWh)
NOx (mg)	350	90	150
PM (mg)	12	8	10
PN (10 nm, #)	5x10 ¹¹	2x10 ¹¹	3x10 ¹¹
CO (mg)	3500	200	2700
NMOG (mg)	200	50	75
NH ₃ (mg)	65	65	70
CH ₄ (mg)	500	350	500
N ₂ O (mg)	160	100	140
HCHO (mg)	30	30	

MAW: Moving Averaging Window, 90th or 100th percentile

Euro 7 proposal for trucks & buses

- Entry into force as of 1/7/2027
- Driving conditions
 - Focus on on-road driving
 - Definition of normal and extended area
 - Some differences with cars and vans
 - Procedures to be further defined by implementing legislation
- Lifetime
 - Main: up to 300k km or 8 years (<16t), 700k km or 15 years (>16t)
 - ◆ Additional: up to 375k km (<16t), 875k km (>16t)

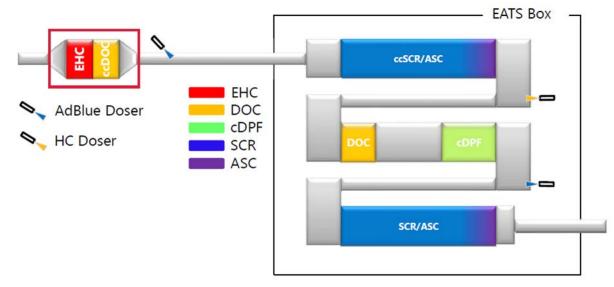
	Normal	Extended	
Ambient temperature	-7 to 35 °C	-10 to -7 °C or 35 to 45 °C	
Ambient altitude	0 to 1600 m	1600 to 1800 m	
Towing or aerodynamic modifications	Not allowed	Allowed according to manufacturer specifications and up to the regulated speed	
Vehicle payload	>10%	<10%	
Auxiliaries	Possible as per normal use	-	
ICE loading at cold-start	Any	-	
Trip composition	As per usual use	-	
Min. mileage	5000 km (<16t) 10000 km (>16t)	3000 to 5000 km (<16t) 3000 to 10000 km (>16t)	

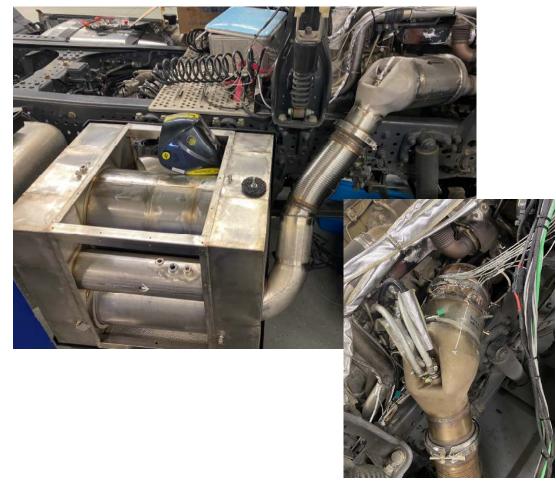
^{*} The same emission strategy shall be used when a vehicle is run outside those conditions, unless there is a technical reason approved by the type approval authority

HD diesel demonstrator vehicle and project partners

- Base vehicle description

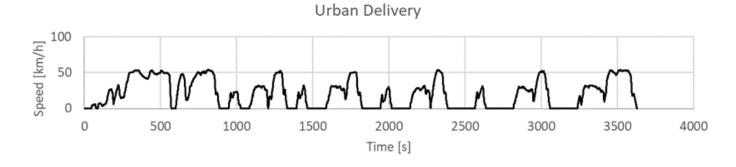
 - Euro VI C certified
 - Engine OM 471
 - 12.8 liter, 6 cylinder in-line
 - High Pressure EGR
 - 450hp @ 1600rpm
- Project partners

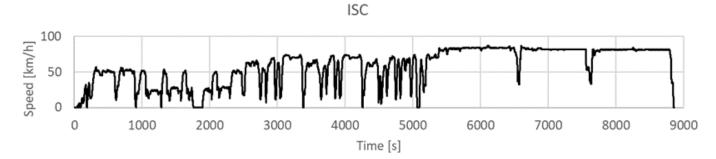

Automotive Grade Urea Sector Group



HD diesel demonstrator concept

- AECC emissions control system
 - Phase 1: ccDOC, ccSCR/ASC+ ufDOC+cDPF+ SCR/ASC, twin AdBlue dosing and HC doser
 - Phase 2: additional EHC as part of the ccDOC
 - Components are hydrothermally aged targeting 500k km

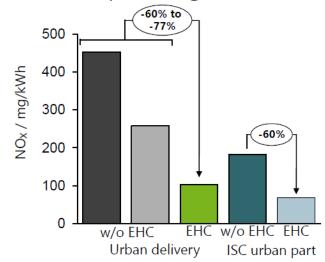


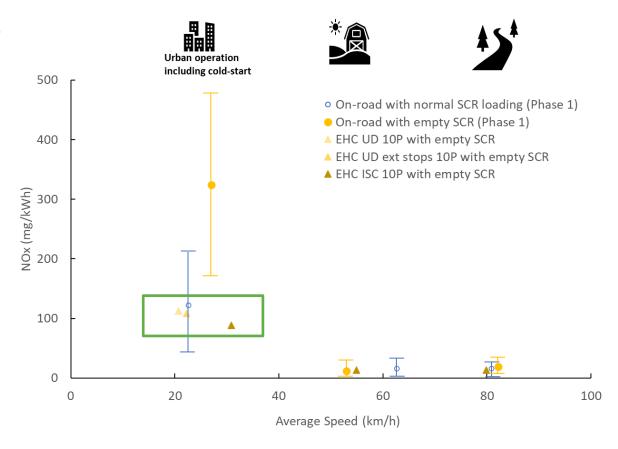

HD diesel demonstrator testing

Overview of the on-road testing conditions (Phase 1 and 2)

Urban delivery route

On-road in-service conformity route

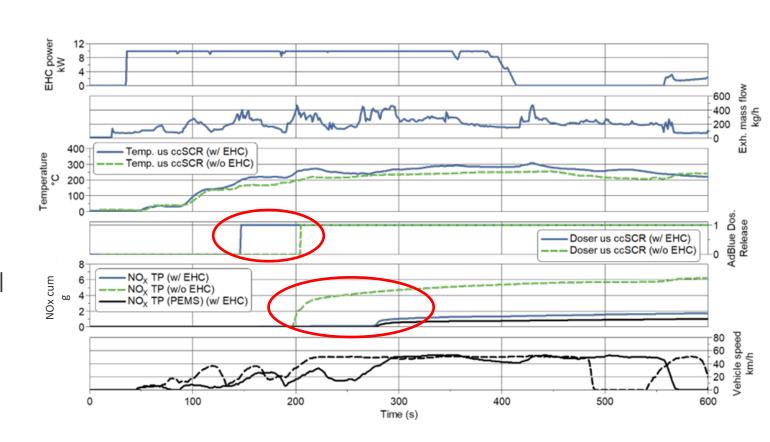




Reduction of initial cold-start emissions with EHC

- NOx emissions are reduced by 60-77% with EHC compared to first project phase^{1, 2}
 - ◆ Faster heat-up during initial cold-start
 - Maintaining temperature during low-load or start-stop driving

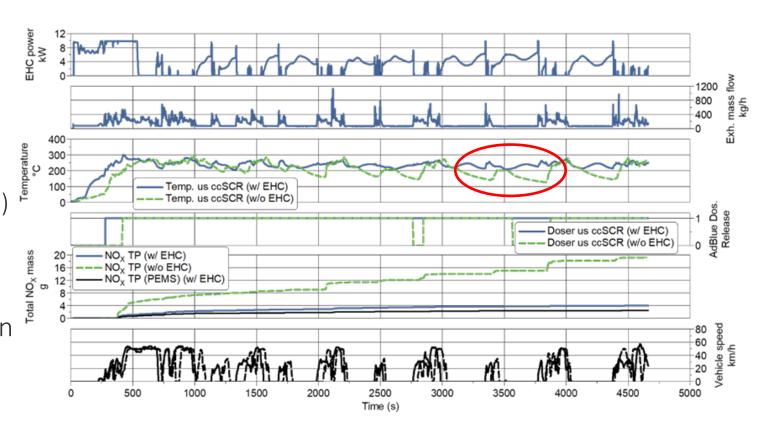
¹ P. Mendoza Villafuerte, et al.; "Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control on a Heavy-duty Truck Application", 42nd Vienna Motor Symposium 2021


² P. Mendoza Villafuerte, et al.; "Future-proof heavy-duty truck achieving ultra-low pollutant emissions with a close-coupled emission control system including active thermal management",

Transportation Engineering, Volume 9, September 2022, 100125, 2022

Reduction of initial cold-start emissions with EHC

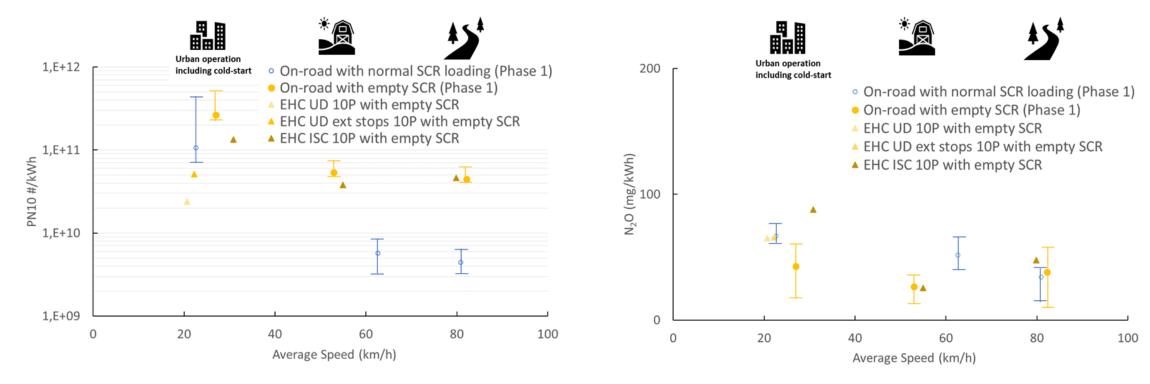
- Urban delivery trip^{1,2} initial 600 s
- ▶ EHC control strategy and effect
 - ◆ AdBlue dosing release of ccSCR is advanced 60 s
 - Around 67% NOx emissions reductions in complete cycle
- O₂ impact depends on EHC control strategy


¹ The results are reported as measured by NOx and temperature sensors instrumented in the exhaust system

² Tests were conducted with depleted SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise, test conducted at 5°C, 10% PT

Near-zero emissions at longer idling stops with EHC

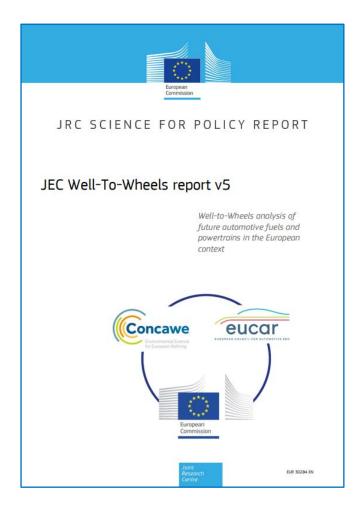
- Total urban delivery trip^{1,2}
- **●** EHC control strategy and effect
 - ★ Keeps the ccSCR within the target temperature on a dedicated extended stops test (2, 4 and 6 min)
 - Around 67% NOx emissions reductions in complete cycle
- Emission slip during first acceleration is no longer present thanks to the use of the EHC


² Tests were conducted with depleted SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise, test conducted at 7°C, 10% PT

¹ The results are reported as measured by NOx and temperature sensors instrumented in the exhaust system

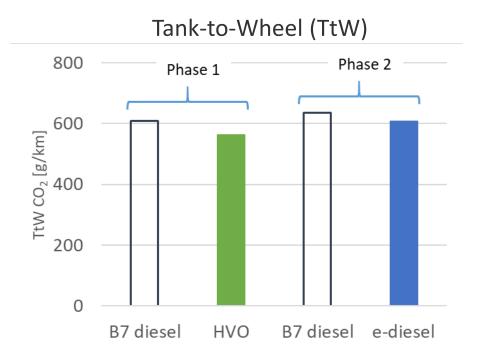
Good control of non-regulated emissions

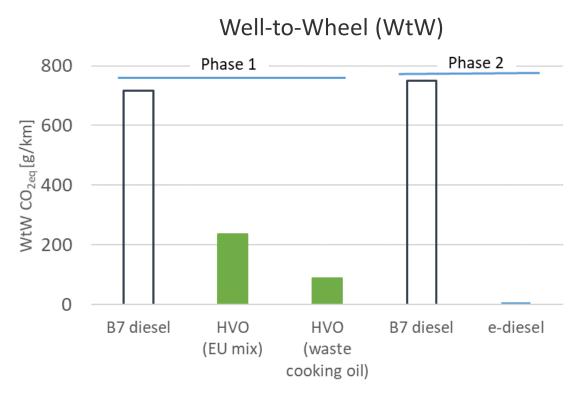
- **○** Low PN10^{1,2} emissions are achieved overall, cold start particulates remain main emission event
- N₂O emissions are kept at low levels


¹ The results are reported as measured by protype PN10 PEMS

² Tests were conducted with depleted SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise

HD diesel demonstrator Well-to-Wheel CO₂ emissions


- JEC Well-To-Wheel report version 5 methodology has been used to calculate the WtW CO₂ emissions
 - Well-to-Tank (WtT) input data is coming from the JEC WtW report
 - ◆ Tank-to-Wheel input data is from the on-road testing performed and fuel properties provided by the fuel suppliers
- Following pathways are investigated
 - ▶ B7 market diesel
 - NO
 - EU mix
 - Waste cooking oil
 - e-diesel

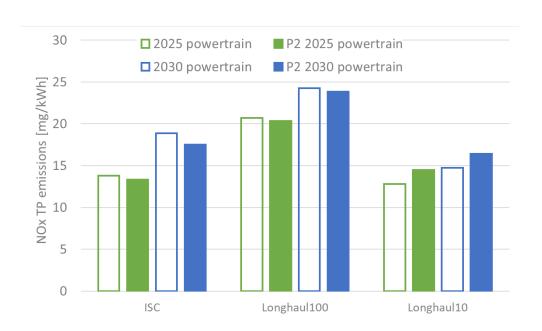


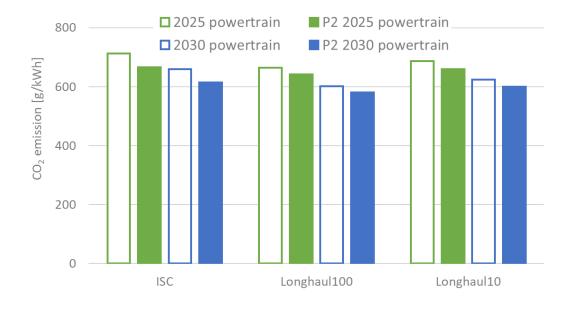
HD diesel demonstrator Well-to-Wheel CO₂ emissions

- ► HVO already offers today significant reduction of up to 90% WtW CO₂ reduction straight from the pump depending on the feedstock
- e-diesel has the potential to nearly eliminate WtW CO₂ emissions

D. Bosteels, et al.; "Combination of advanced emission control technologies and sustainable renewable fuels on a long-haul demonstrator truck", SIA Powertrain & Energy conference, 2022

Additional simulations on NOx and CO₂ emissions


- Simulations conducted by FEV
 - Phase 2 emission control system
 - Model validated based on available measurement data
- Reference simulation for 2025 powertrain
 - In-Service Conformity test
 - **♦** VECTO long haul cycles
- ▶ Investigation of 2030 powertrain, focusing on following potential technologies (not exhaustive list of available technologies)
 - ICE with BTE of ~55%
 - P2 hybrid


	2025		2030	
	powertrain	2025 P2 hybrid	powertrain	2030 P2 hybrid
Low NOx mode (~2 g/kWh)	<u> </u>	<u> </u>	<u> </u>	
High efficiency mode (~5-8 g/kWh)	<u> </u>	<u> </u>	<u> </u>	<u> </u>
FEV 55% BTE engine				
Increased peak firing pressure and compression ratio			<u> </u>	<u> </u>
Improve boosing system, friction layout and combustion system			<u> </u>	<u> </u>
Waste Heat Recovery			<u> </u>	<u> </u>
P2 hybrid system				

Additional simulations about NOx and CO₂ emissions

- NOx tailpipe emissions remain between 15-25 mg/kWh
 - Despite up to 40% increase in engine-out NOx emissions, from 5 to 8 g/kWh
- ◆ Tailpipe CO₂ reduction potential of 11-14%
 - Further Well-to-Wheel reduction to come from running on a sustainable renewable fuel

Summary

- Ultra-low gaseous and particulate emissions are technically feasible in a broad range of driving conditions thanks to the close-coupled catalysts and heating measures implemented on the truck
- Emission control technologies fully operating in combination with drop-in sustainable renewable fuels enable ultra-low pollutant emissions while contributing towards net-zero CO₂ emissions
- NOx-CO₂ simulations show 11-14% tailpipe CO₂ reduction can be expected with 2030 engine combustion technology improvements, additional WtW CO₂ reduction needed and to come from running on a sustainable renewable fuel

THANK YOU!

www.aecc.eu

@AECC_eu

AECC (Association for Emissions Control by Catalyst)

