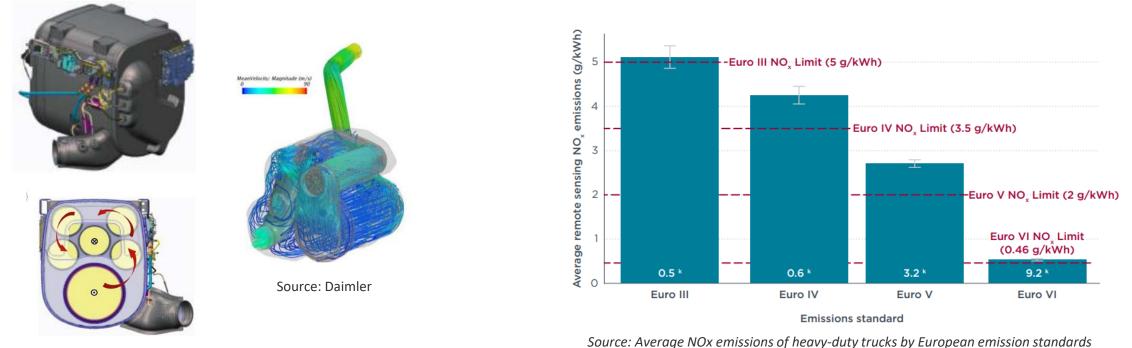
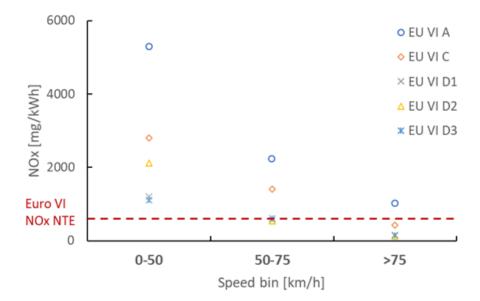
Towards Zero-impact Emissions for a Demonstrator Truck with Active Thermal Management, Dual-SCR, DPF and e-Diesel


Joachim Demuynck, Dirk Bosteels

SAE HD Diesel Sustainable Transport Symposium • Gothenburg • 3 May 2023

Euro VI-D/E significantly reduced impact on air quality

- Implementation of advanced emission control systems in a compact design
- Actual emissions reduction in the fleet confirmed by remote sensing data


for Flanders remote sensing campaign, <u>ICCT, 2022</u>

Source: DAF

Further evolution expected towards Euro 7

- Analysis of real-world emissions of Euro VI vehicles
 - Highest emissions mainly occur in 0-50 km/h speed bin
 - Initial cold-start peak
 - Low-load operation
 - Emissions reduced from Euro VI-A to VI-D
 - Euro VI-D/E post processing still excludes critical data

Source: P. Mendoza Villafuerte, et al.; "<u>Real-World Emissions of Euro VI</u> <u>Heavy-Duty Vehicles</u>", SAE Technical paper, 2021-01-5074, 2021

Euro 7 proposal further focuses on on-road emissions performance with introduction of RDE test procedure for Heavy-duty vehicles

Content

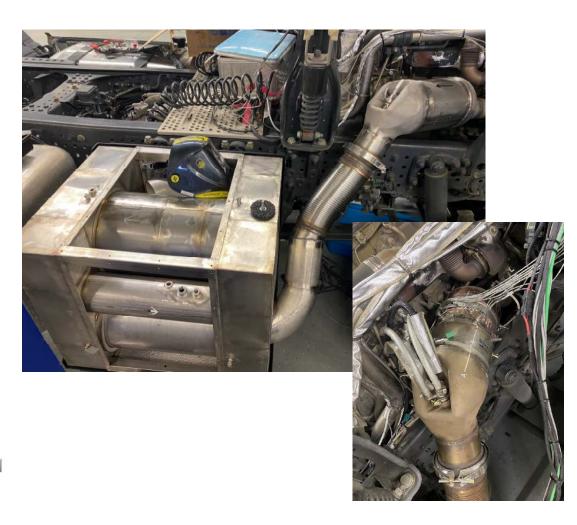
> HD diesel demonstrator concept

- Reduction of initial cold-start emissions
- Euro VII data analysis
- > HD diesel demonstrator with sustainable renewable fuels

HD diesel demonstrator concept

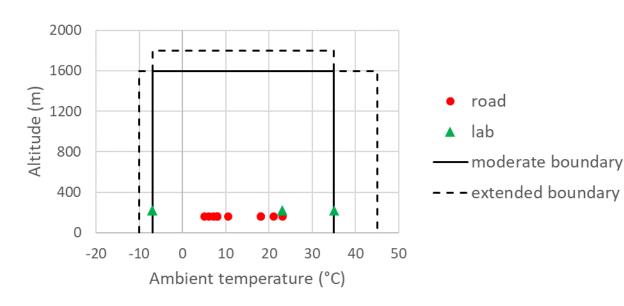
- Base vehicle description
 - MB Actros 1845 LS 4x2
 - Engine OM 471
 - Euro VI C certified
 - 12.8 litres, 6 cylinder in-line
 - High Pressure EGR + DOC + DPF + SCR
- Acknowledgement of project partners

Scientific papers with full details


P. Mendoza Villafuerte, et al.; "Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control", 42nd Vienna Motor Symposium 2021
P. Mendoza Villafuerte, et al.; "Future-proof heavy-duty truck achieving ultra-low pollutant emissions", Transportation Engineering, Volume 9, September 2022, 100125, 2022

HD diesel demonstrator concept

- ♦ AECC emissions control system
 - Phase 1: ccDOC, ccSCR/ASC+ ufDOC+cDPF+ SCR/ASC, twin AdBlue dosing and HC doser
 - ♦ Phase 2: additional EHC as part of the ccDOC
 - Components are hydrothermally aged targeting 500k km



Focus is on low load and challenging cold-start

- > Up to boundary of normal area covered of the Euro 7 proposal for
 - Ambient temperature
 - Payload: 10% (focus) 50% 100%
- Different tests conducted to vary trip composition
- Additional challenge by starting with empty SCR and partially regenerated filter

Test type	Test	Project phase
Road	In-Service Conformity (ISC)	ccDOC and ccEHC
	Urban Delivery (UD)	
	Alternative Route	
Lab	Real-World Test	ccDOC
	Urban Delivery	
	JRC RDE	
	TU Graz low-load	

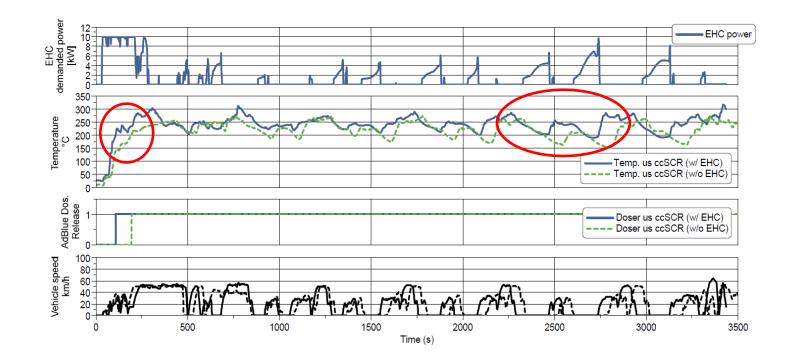
Reduction of initial cold-start emissions

- Significant improvement of urban emissions including cold-start compared to Euro VI-D in phase 1 of the project with ccDOC
- Near-zero emissions under warm operation
- Impact of ammonia storage depletion procedure shows robust control is needed for AdBlue[®] dosing, ammonia storage and thermal management
- NOx emissions reduced by 60-77% with EHC in phase 2 of the project
 - Faster heat-up during initial cold-start
 - Maintaining temperature during low-load or start-stop driving

Urban operation including cold-start 500 ccDOC with normal SCR loading (Ph 1) 400 ccDOC with empty SCR (Ph 1) (HWh) x00 (mg/kWh) 200 ▲ ccEHC with empty SCR (Ph 2) 100 10 0 0 20 40 60 80 100

Overview of ISC and UD tests at 10% payload

Average Speed (km/h)

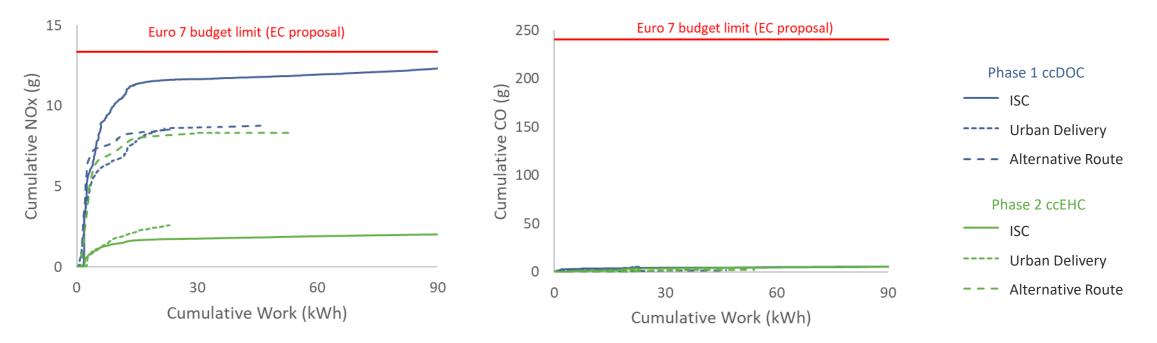


Reduction of initial cold-start emissions

Illustration of EHC control strategy and effect during Urban Delivery test

- ♦ AdBlue dosing can start around 60 s earlier
- System is kept at operating temp regardless of long stops

S As the vehicle is not a hybrid, the EHC power was generated by a genset installed in the trailer

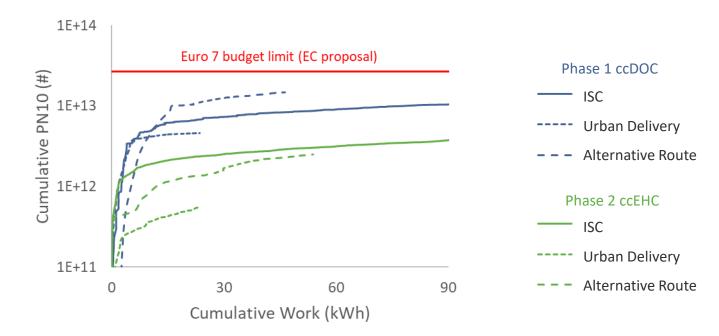


All data is below the proposed emission budget limit

Gaseous pollutants

- All data shown is with empty SCR at the start of the test
- NOx emissions are highest challenge
- \odot All data is significantly below the limit for CO, NH₃ and N₂O

Note: Hot WHTC reference value used is 29.7 kWh

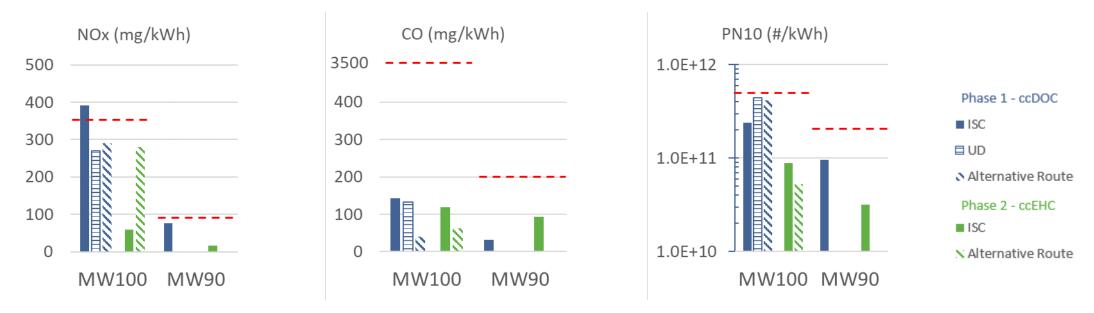


All data is below the proposed emission budget limit

Particulates

- All data shown is with partially regenerated filter at the start of the test
- ♦ All tests are below the limit

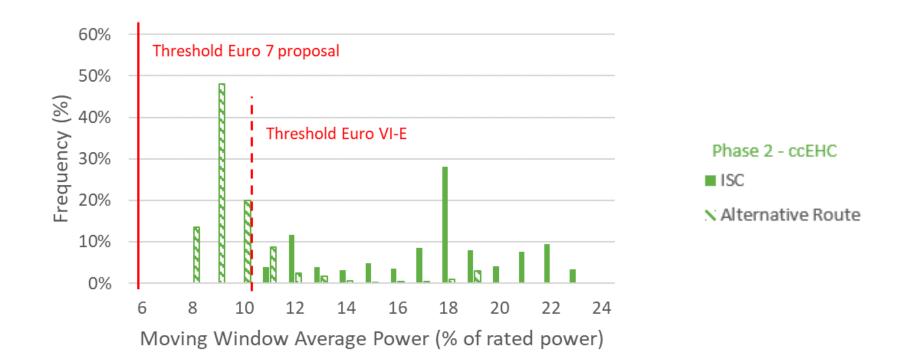
• Data indicates lower PN10 with ccEHC, but no repetitions available to further investigate



Note: Hot WHTC reference value used is 29.7 kWh

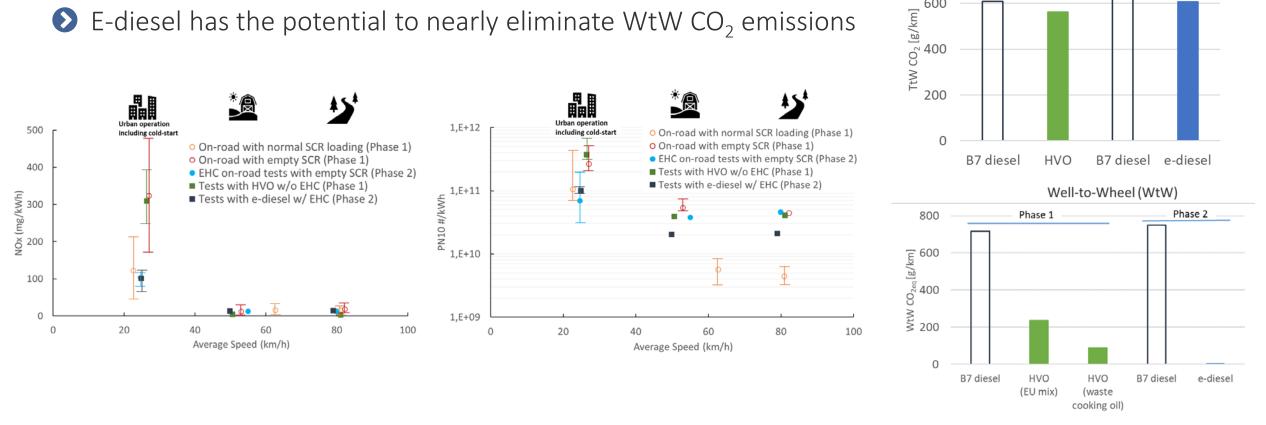
All phase 2 data is below the proposed MW90/100 limits

- ♦ All data shown is with empty SCR and partly regenerated filter at the start of the test
- All tests from phase 2 with ccEHC remain below the limits for NOx
- \triangleright All tests from both phases remain below the limits for CO, NH₃, N₂O and PN10


Note 1: only ISC reaches the 3xWHTC work threshold

100th percentile is calculated for tests where at least 1 window is available (as if it would be part of a longer test) Note 2: Hot WHTC reference value used is 29.7 kWh, window specific emissions calculated based on actual cumulated work

Moving Window method considers all data measured


Average power for each Moving Window is higher than the proposed 6% threshold
Low load tests cover significant amount of data below the Euro VI-E 10% threshold

HD diesel demonstrator with sustainable renewable fuels

- Ultra-low pollutant emissions confirmed on HVO and e-diesel
- HVO already offers today up to 90% WtW CO₂ reduction \bigcirc
- E-diesel has the potential to nearly eliminate WtW CO₂ emissions

D. Bosteels, et al.; "Combination of advanced emission control technologies and sustainable renewable fuels on a long-haul demonstrator truck", SIA Powertrain & Energy conference, 2022

Tank-to-Wheel (TtW)

Phase 1

Phase 2

800

600

Summary

An advanced emission control system was implemented on a demonstrator diesel truck, including

- A catalyst in close-coupled position in combination with an electrically heated catalyst
- ♦ Dual-SCR with twin urea-dosing system
- Catalysed particulate filter
- Ultra-low gaseous and particulate emissions were demonstrated over a broad range of driving conditions
 - Significant reduction of initial cold-start peak
 - Near-zero emissions after initial cold-start
- Ultra-low pollutant emissions were confirmed on HVO and e-diesel enabling significant reductions in WtW CO₂ emissions

THANK YOU !

AECC (Association for Emissions Control by Catalyst)

AECC eu

