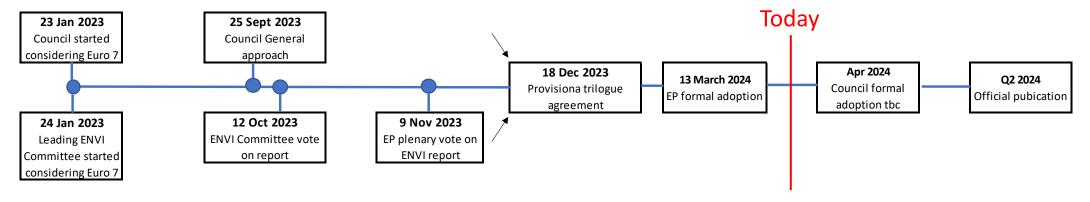
Heavy-duty Euro 7 update and AECC demonstration programmes

Int. Symposium of Low Emissions and Fuel Efficient Technologies to Meet China 7 Requirements • 26 March 2024 • Chengdu

AECC represents European Emissions Control Companies

- Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles, and non-road mobile machinery
 - ♠ AECC is listed in EU Transparency Register (# 78711786419-61) and has consultative status with the UN Economic and Social Council (ECOSOC)


Agenda

- Heavy-duty Euro 7 update
- AECC heavy-duty diesel demonstration programme
 - Oriteria pollutants with state-of-the-art emission control systems
 - GHG emissions with sustainable renewable fuels
 - Conclusions
- Outlook
 - **♦** HD CO₂ review and CO₂ neutral fuels
 - ◆ H₂ ICE (Internal Combustion Engine)
 - NRMM (Non-Road Mobile Machinery)

Overview of ongoing Euro 7 process

- Euro 7 proposal is in ordinary legislative procedure by EU Council and European Parliament
 - Provisional trilogue agreement reached on 18 December 2023 (Council and EP press release)
 - Final draft text is available on the Council website here
 - Formal adoption ongoing before EU elections (June 2024)

- ♦ Implementing legislation development by European Commission reconvened in Q1/2024
 - Drafting by European Commission DG GROW and DG JRC
 - Oconsulting stakeholders in AGVES (Advisory Group on Vehicle Emissions Standards) meetings
 - **♦** Little development needed for exhaust because Euro 6/VI test procedures are nearly kept

Euro 7 implementation timeline

- Reference to entry into force of main act
- Entry into force is 20 days following publication in Official Journal

		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Light-duty	Final = Council position	* -	+30 mor	+30 months New Types All Types Small volume manufacturers									
	Commission proposal		All no	ew vehicles									
Parliament position New Types All Types													
Heavy-duty	Final = Council position	* -	+48 months			New	Types All T	ypes	Smal	ll volume ma	nufacturers		
	Commission proposal				All ne	w vehicles							
	Parliament position					New Types All Types							

^{*} Assuming entry into force in July 2024

^{**} Implementation timing for new systems, components or separate technical units is same as New Types

Euro 7 for heavy-duty vehicles

- Significant reduction of limit values
 - ◆ ~50% reduction for already regulated pollutants
 - New limits introduced for NH₃ and N₂O
- PN10 measurement procedure instead of PN23
- Test procedures nearly kept from Euro VI-E
 - MAW low power threshold is reduced from 10% to 6%

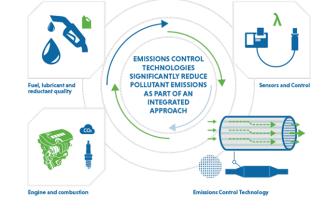
0	Durability	is	extended
---	------------	----	----------

- Main lifetime up to 300 000 km or 8 years (Cat. 1), 700 000 km or 12 years (Cat. 2)
- ◆ Additional lifetime up to 375 000 km or 10 years (Cat. 1), 875 000 km or 15 years (Cat. 2)
 - Durability multiplier for gaseous pollutant emissions tbc by 31 December 2025

Cat. 1: N2, N3<16t, M3 <7.5t Cat. 2: N3>16t and M3>7.5t

A		

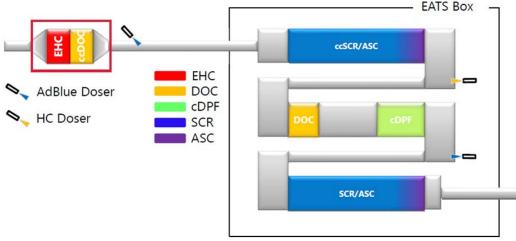
	WHSC/WHTC (/kWh)	RDE (/kWh)
NOx (mg)	200	260
PM (mg)	8	-
PN (10 nm, #)	6x10 ¹¹	9x10 ¹¹
CO (mg)	1500	1950
NMOG (mg)	80	105
NH ₃ (mg)	60	85
CH ₄ (mg)	500	650
N ₂ O (mg)	200	260


Agenda

- ♦ Heavy-duty Euro 7 update
- AECC heavy-duty diesel demonstration programme
 - Oriteria pollutants with state-of-the-art emission control systems
 - GHG emissions with sustainable renewable fuels
 - Conclusions
- Outlook
 - HD CO₂ review and CO₂ neutral fuels
 - ▶ H₂ ICE (Internal Combustion Engine)
 - NRMM (Non-Road Mobile Machinery)

AECC demo data on criteria pollutants and GHG emissions

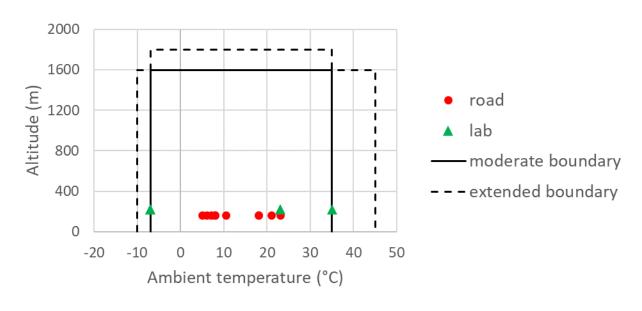
- Demonstrators show ultra-low pollutant emissions with emission control technologies in an integrated approach
- Tests show compatibility with drop-in sustainable renewable fuels, with substantial reduction in WtW CO₂ emissions
- Acknowledgement of external project partners



HD diesel demonstrator concept

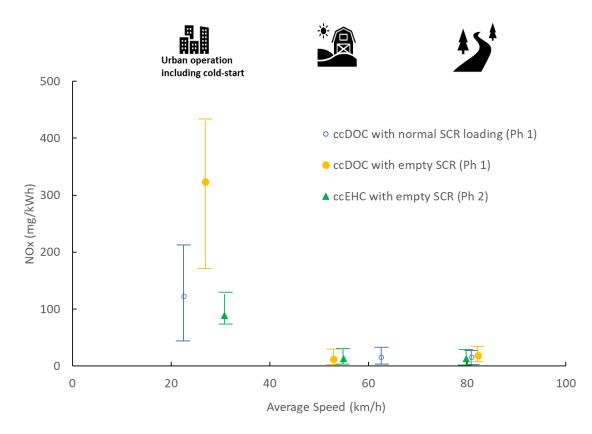
- Base vehicle description
 - Actros 1845 LS 4x2
 - Engine OM 471
 - Furo VI C certified
 - 12.8 litres, 6 cylinder in-line
 - High Pressure EGR + DOC + DPF + SCR
- AECC emissions control system
 - ◆ Phase 1: ccDOC, ccSCR/ASC+ ufDOC+cDPF+ SCR/ASC, twin AdBlue dosing and HC doser
 - Phase 2: additional EHC as part of the ccDOC
 - Components are hydrothermally aged targeting 500k km

P. Mendoza Villafuerte, et al.; "Demonstration of Extremely Low NOx Emissions with Partly Close-Coupled Emission Control on a Heavy-duty Truck Application", 42nd Vienna Motor Symposium 2021


P. Mendoza Villafuerte, et al.; "Future-proof heavy-duty truck achieving ultra-low pollutant emissions", Transportation Engineering, Volume 9, September 2022, 100125, 2022

Focus was on low load and challenging cold-start

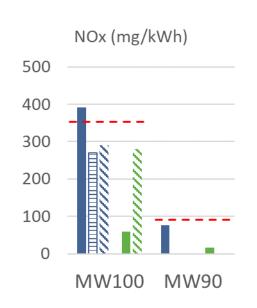
- Up to boundary of normal area covered for
 - Ambient temperature
 - Payload: 10% (focus) − 50% − 100%
- Different tests conducted to vary trip composition
 - ◆ Additional challenge covered by starting with empty SCR and partially regenerated filter

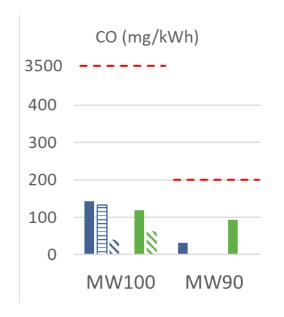

Test type	Test	Project phase		
	In-Service Conformity (ISC)	ccDOC and		
Road	Urban Delivery (UD)			
	Alternative Route	002110		
	Real-World Test			
Lab	Urban Delivery	ccDOC		
Lau	JRC RDE	CCDOC		
	TU Graz low-load			

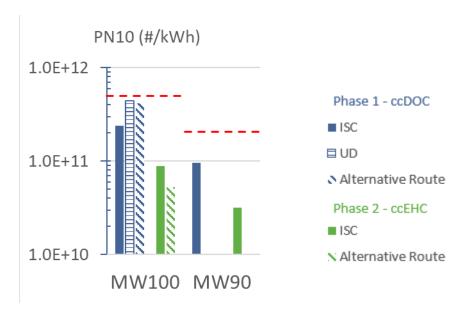
Reduction of initial cold-start emissions with EHC

- Significant improvement of urban emissions including cold-start compared to Euro VI-D in phase 1 of the project
- Near-zero emissions under warm operation
- Impact of ammonia storage depletion procedure shows robust control is needed for AdBlue® dosing, ammonia storage and thermal management
- NOx emissions further reduced by 60-77% with EHC in phase 2 of the project
 - ◆ Faster heat-up during initial cold-start
 - Maintaining temperature during low-load or start-stop driving

Overview of ISC and UD tests at 10% payload





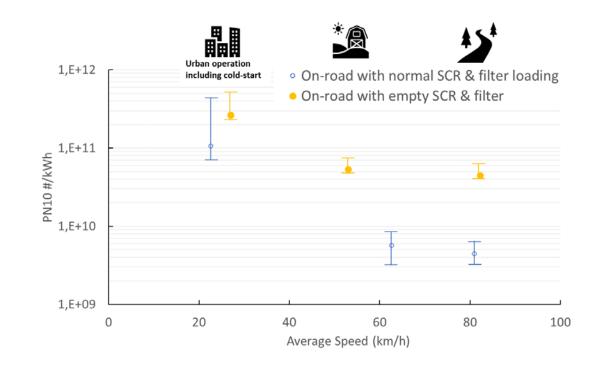


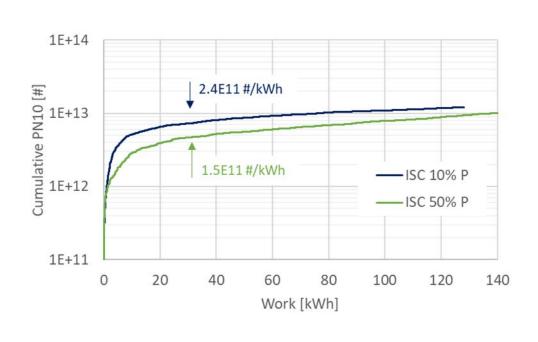
All phase 2 data is below the original Euro 7 proposal limits

- All data shown is with empty SCR and partly regenerated filter at the start of the test
- ◆ All tests from phase 2 with ccEHC remain below the limits for NOx
- \triangleright All tests from both phases remain below the limits for CO, NH₃, N₂O and PN10

Note 1: only ISC reaches the 3xWHTC work threshold

100th percentile is calculated for tests where at least 1 window is available (as if it would be part of a longer test)

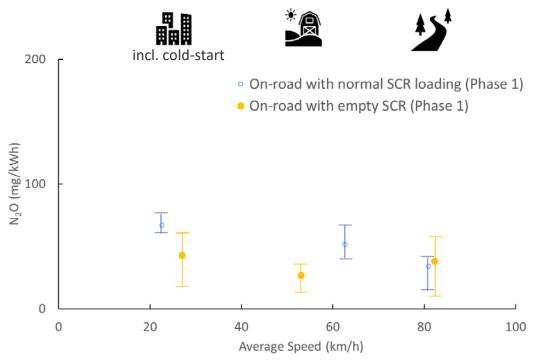

Note 2: Hot WHTC reference value used is 29.7 kWh, window specific emissions calculated based on actual cumulated work

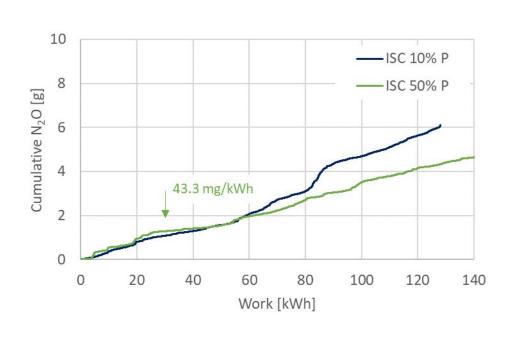


Good control of particulate emissions

- **○** Low PN10^{1,2} emissions are achieved at urban delivery and in service conformity trips³
- Temperature, payload and trip profile can impact these emissions

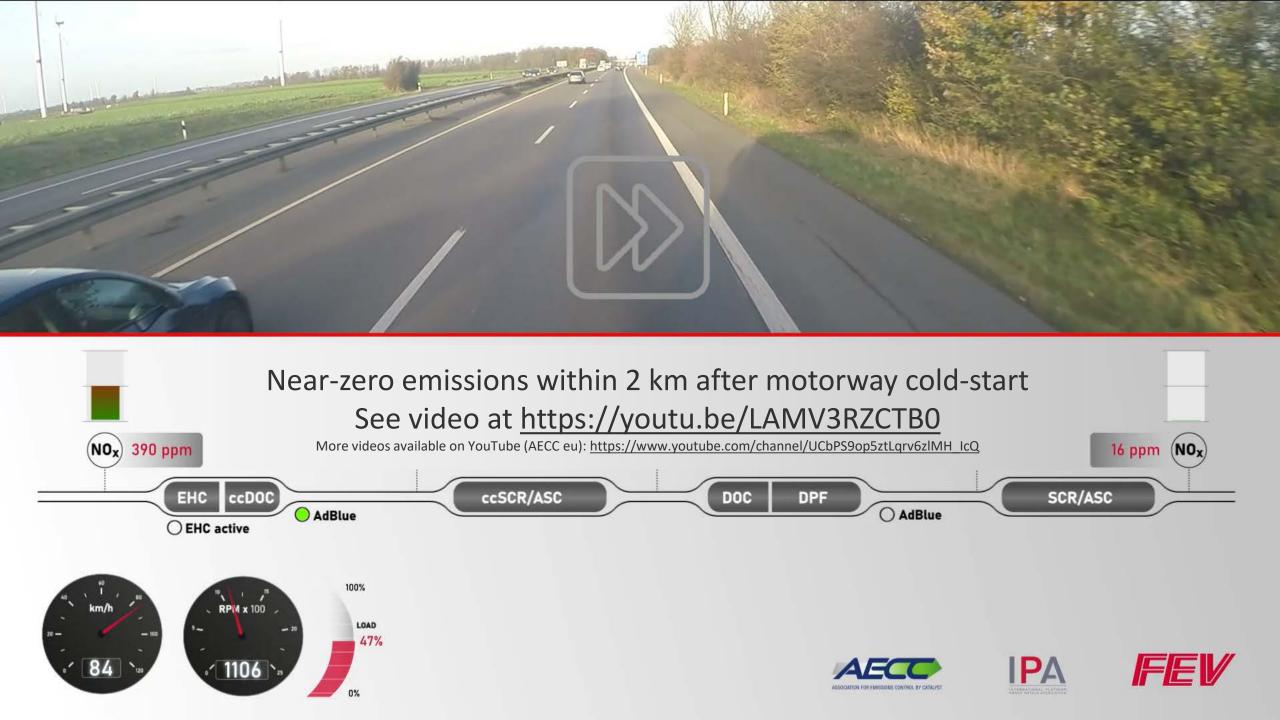
³ Tests were conducted with empty SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise. ISC 10% PL conducted at 21°C, ISC 50% PL conducted at 18°C


¹ The results are reported as measured

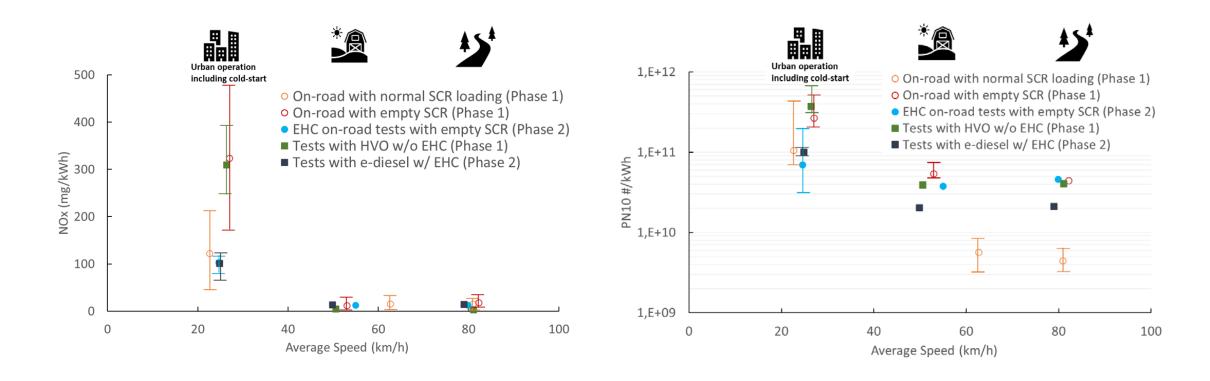

² Test conducted are not covering all possible critical conditions for PN

Good control of non-regulated emissions

- N₂O emissions are kept to low levels
- Near-zero NH₃ emissions have been achieved due to the AdBlue® dosing control in combination with the implementation of an ASC after each SCR

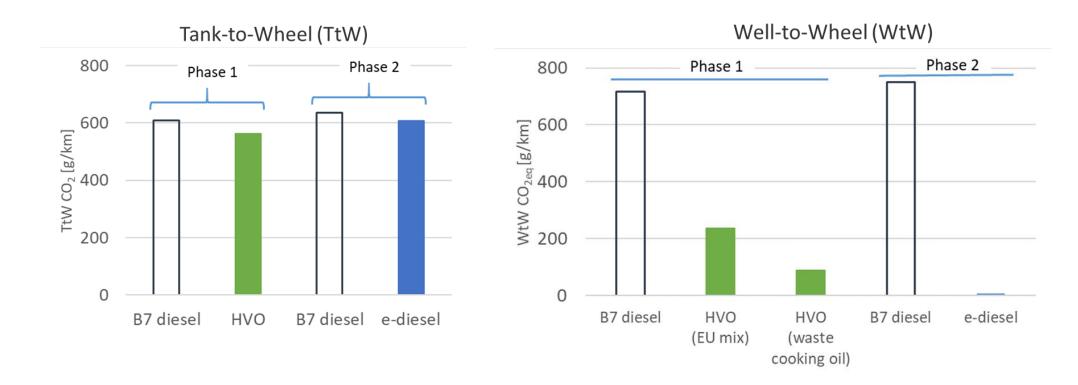


² Tests were conducted with empty SCRs' ammonia storage and passively regenerated DPF unless indicated otherwise. ISC 10% PL conducted at 21°C, ISC 50% PL conducted at 18°C


¹ The results are reported as measured

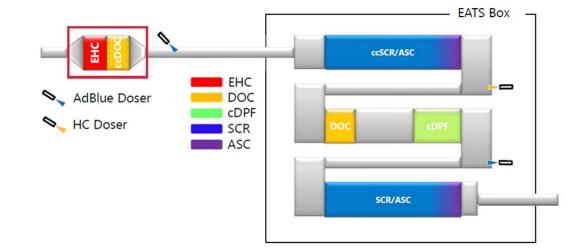
HD diesel demonstrator with sustainable renewable fuels

Ultra low-pollutant emissions confirmed on HVO and e-diesel


D. Bosteels, et al.; "Combination of advanced emission control technologies and sustainable renewable fuels on a long-haul demonstrator truck", SIA Powertrain & Energy conference, 2022

HD diesel demonstrator with sustainable renewable fuels

- HVO already offers today up to 90% WtW CO₂ emissions reduction
- **②** E-diesel has the potential to nearly eliminate WtW CO₂ emissions


D. Bosteels, et al.; "Combination of advanced emission control technologies and sustainable renewable fuels on a long-haul demonstrator truck", SIA Powertrain & Energy conference, 2022

Conclusions

- Available emission control technologies used
 - Close-coupled layout
 - Active thermal management
 - Dual-dosing SCR with ASC
 - Catalysed DPF

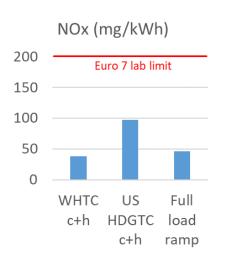
- Ultra-low gaseous and particulate emissions are technically feasible under real-world driving conditions
 - Significant reduction of initial cold-start peak
 - Near-zero emissions after initial cold-start peak
- ▶ In combination with near-zero Well-to-Wheel CO₂ emissions using sustainable renewable fuels

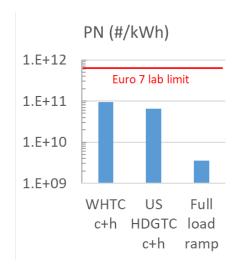
Agenda

- ♦ Heavy-duty Euro 7 update
- ◆ AECC heavy-duty diesel demonstration programme
 - Oriteria pollutants with state-of-the-art emission control systems
 - **●** GHG emissions with sustainable renewable fuels
 - Conclusions
- Outlook
 - **♦** HD CO₂ review and CO₂ neutral fuels
 - ◆ H₂ ICE (Internal Combustion Engine)
 - NRMM (Non-Road Mobile Machinery)

Heavy-duty CO₂ review and CO₂ neutral fuels

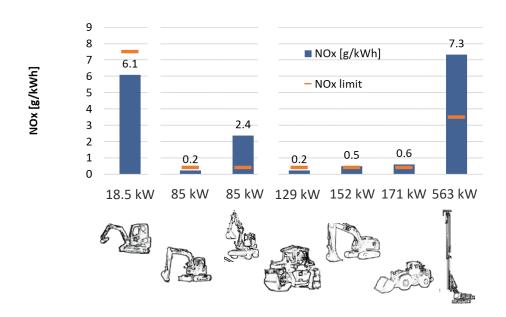
- European Parliament and Council reached provisional trilogue agreement on 18 January 2024
 - **②** CO₂ reduction targets
 - -45% from 2030, -65% from 2035, -90% from 2040
 - Urban buses: -90% by 2030, -100% by 2035; inter-urban buses are exempted
 - -7.5% for trailers and -10% for semi-trailers, from 2030
 - ◆ Review of the regulation is requested in 2027
 - Expansion of the scope to small lorries
 - Role of a Carbon Correction Factor (CCF) in the transition towards zero-emission HDVs
- Formal adoption process is ongoing
 - Recital 13b added on CO₂ neutral fuels
- (13b) Following consultation with stakeholders, the Commission will, within a year from entry into force of this regulation, assess the role of a methodology for registering HDV exclusively running on CO2 neutral fuels, in conformity with Union law and with Union climate neutrality objective;

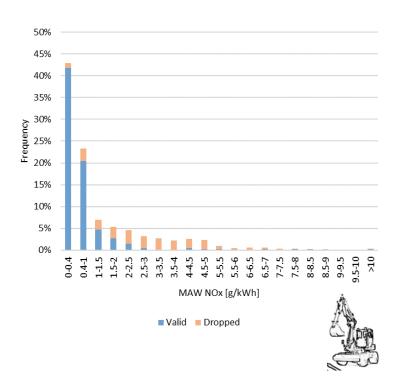



H₂ ICE (Internal Combustion Engine)

- Type approval procedures are being adopted at UNECE for HD and NRMM
- AECC is looking into emission control requirements
 - Publications will follow in 2024 from demo project of Aramco and ActBlue France at AVL
 - System investigated

All results are below Euro 7 limits




NRMM: Non-Road Mobile Machinery

NRMM (Non-Road Mobile Machinery)

- AECC is looking into demonstration activities
- AECC and TNO looked at real-world NOx emissions of Stage V machines in the field
 - ◆ Large variation in average real-world NOx emissions
 - NRMM regulation does not consider a substantial share of the real working conditions

R. Vermeulen, et al.; "Real-World NOx emissions of Stage V NRMM", Transport and Air Pollution Conference, 2023

THANK YOU

www.aecc.eu

@AECC_eu

AECC (Association for Emissions Control by Catalyst)

■ AECC eu

Additional references

- AECC <u>fact sheet</u> on myths and truths about Euro 7
- Implementation of available and affordable emission control systems
 - Ocost assessment of engineering houses
 - LD demo vehicles
 - HD demo vehicle
 - Provided as input to European Commission impact assessment
- Emission control systems are designed for minimised impact on backpressure
 - See **Q&A** document of AECC-IPA Technical Seminar on Euro 7

