

# Life Cycle Assessment of LDVs and HDVs

<u>Joachim Demuynck</u>, AECC Gerfried Jungmeier, Joanneum Research Dirk Bosteels, AECC SAVE THE DATE 11-12 JUNE 2025

**International Congress & Exhibition** 



## SIA POWERTRAIN 2025



PORT MARLY - FRANCE







## AECC is now the Association for Emissions Control and Climate

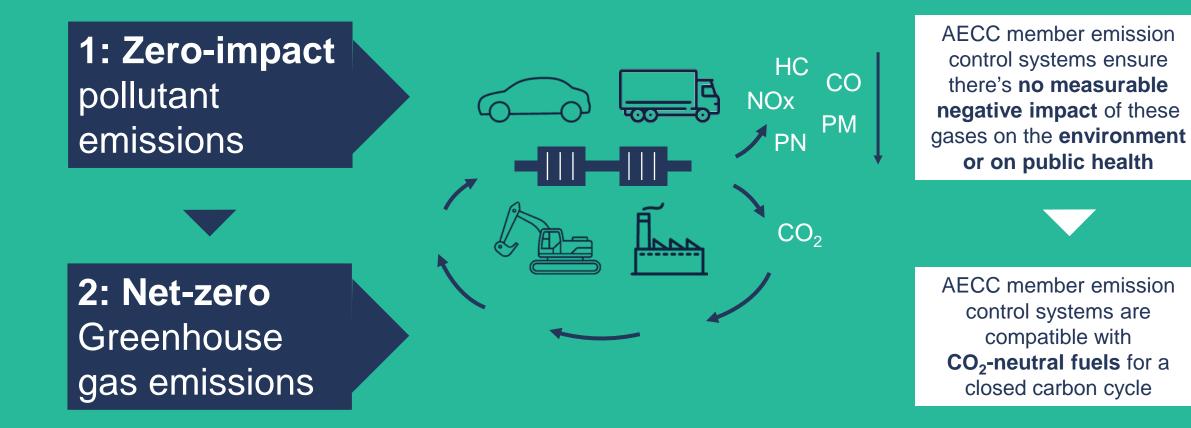
#### **Expanding the scope**

#### **Components and systems**

- Air quality and **Climate** requirements
- Mobile and Stationary emissions sources
- Sustainable components and systems
- Catalysts
- Filters
- Adsorbers

- Fuel cells
- Electrolysers

Full and Associate member companies






EU Transparency Register #78711786419-61, consultative status with the UN Economic and Social Council (ECOSOC)



## AECC works in partnership with EU policymakers to target



AECC

### LCA and LDV/HDV CO<sub>2</sub> reviews are a key AECC activity



H<sub>2</sub> production and utilisation

Life cycle assessment and circular economy







#### Road-vehicle industry working groups AECC is member of

- Working group on Monitoring Methodologies (also known as 'Stuttgart group')
  - Evaluates all mechanical and digital solutions for monitoring the use of CO<sub>2</sub>-neutral fuels
  - Published first report on 11 December 2024

- Network for Sustainable Mobility
  - Informal group of EU associations
  - Discussion of ad-hoc joint statements on topics related to the use of sustainable renewable fuels







## AECC understanding of the EU CO<sub>2</sub> emissions review schedule

#### • LD CO<sub>2</sub> emissions

- Commission proposal amending Reg. (EU) 2017/1151
  - Adding vehicle category running exclusively on CO<sub>2</sub>-neutral fuels
  - Discussions in TCMV on Euro 6 stopped, expected to reconvene for Euro 7 following CO<sub>2</sub> review
- Regulation (EU) 2023/851
  - Article 7a life cycle assessment methodology by 31 December 2025
  - Article 14a Progress report by 31 December 2025
  - Article 15 Review of effectiveness and impact in 2026 (*pulled forward to 2025 by Automotive Action Plan*)
- HD CO<sub>2</sub> emissions
  - Regulation (EU) 2024/1610 Article 15
    - Assessment of sustainable renewable fuels by 31 December 2025
    - Review of effectiveness and impact by 31 December 2027, including
      - Role of carbon correction factor
      - Life cycle assessment methodology
      - Methodology for registering vehicles running exclusively on CO<sub>2</sub>-neutral fuels



# Life-Cycle Assessment method development

- European Commission, DG-CLIMA
  - Information from stakeholder workshop on 11 December 2024
    - Build on existing EU legislative references and UNECE A-LCA IWG
    - Scope
      - All LDV vehicle technologies and powertrains in the EU according to cradle-to-grave method
      - HDV in second step
    - Initial goal: voluntary OEM reporting, feeding into the bi-annual EC progress report
  - Supported by a consortium of Ricardo, Öko-Institut, TU Graz and IVL Sweden
- UNECE A-LCA
  - Timeline for drafting until GRPE adoption (WP.29 adoption to follow)





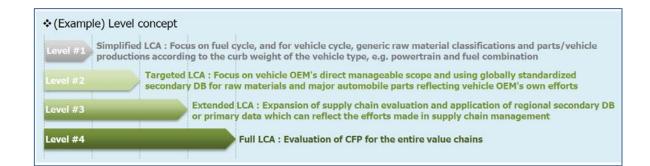
#### **AECC and IPA LCA study**

- Conducted by Joanneum Research
- Objective
  - Extending the Well-to-Wheel CO<sub>2</sub> emissions of AECC-IPA LDV/HDV demonstrators on CO<sub>2</sub>-neutral fuels
  - Understand impact of LCA methodology choices under consideration by UNECE and EU

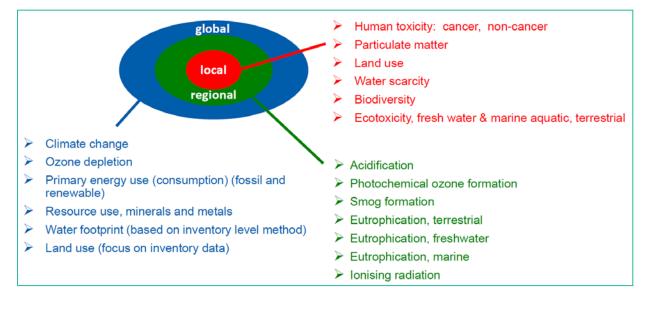











### **AECC and IPA LCA study**

- Scope
  - Level 1-2 LCA study (cfr. levels under consideration at UNECE A-LCA IWG)



- Impact categories investigated
  - Global Warming Potential (GWP CO<sub>2</sub>eq/km)
    - Including impact of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O
  - Primary Energy Demand (PED kWh/km)
  - Several additional impact categories possible





### **AECC and IPA LCA study**

- Scope
  - Vehicles

Powertrains

• Energy sources

• Variation in use phase only

- Passenger cars, based on GreenNCAP vehicles representative for AECC demonstrators
- Trucks, based on IEA Task 46 vehicle representative for AECC demonstrator

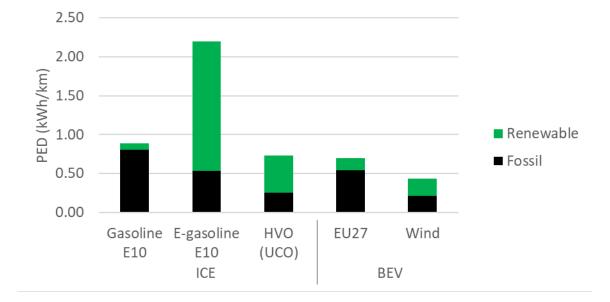
| Powertrain         | Energy sources  |                                                                      | Cars | Trucks |
|--------------------|-----------------|----------------------------------------------------------------------|------|--------|
|                    | Current         | 100% Renewable                                                       |      |        |
| ICE                | B7 diesel       | HVO UCO (Used Cooking Oil)<br>E-diesel (wind and Direct Air Capture) | Х    | Х      |
| ICE                | Gasoline<br>E10 | E-gasoline E10<br>(wind and Direct Air Capture)                      | Х    |        |
| PHEV               | Gasoline<br>E10 | E-gasoline E10<br>(wind and Direct Air Capture)                      | Х    |        |
| BEV                | EU27            | Wind                                                                 | Х    | Х      |
| H <sub>2</sub> ICE | -               | Wind electrolysis                                                    |      | Х      |
| $H_2$ FCEV         | -               | Wind electrolysis                                                    |      | Х      |



#### All LDV powertrains have similarly low GHG emissions

- When operated on renewable electricity/fuel
- ICE and BEV have similar emissions for production of vehicle body
  - Emissions of battery production are additionally significant for BEV
- Remaining ICE emissions are mainly from fuel supply and combustion
  - Combustion becomes net-zero in case of e-fuel or HVO (UCO)
- Remaining BEV emissions are from electricity supply

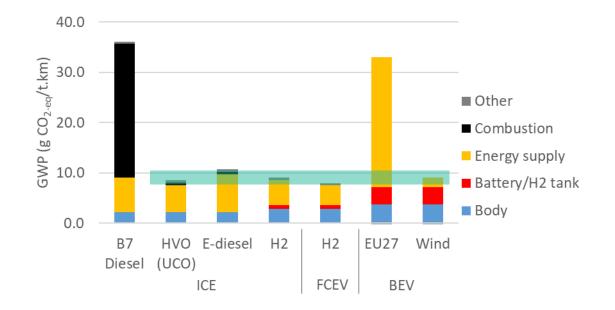



#### Key assumptions

- GreenNCAP LCA methodology
- C-segment vehicle
- Production: 2024 global average
- Fuel/energy varied only in use phase
- Lifetime: 240k km, 16 years
- E-gasoline from wind & DAC
- HVO from Used Cooking Oil
- $CO_{2eq}$  incl.  $CO_2$ ,  $CH_4$  and  $N_2O$



#### **Mixed picture for Primary Energy Demand**


- Primary Energy Demand (PED) represents the amount of energy needed to drive a km
- BEV on wind and ICE on HVO (UCO) have the lowest PED from those powertrain options that are relying on renewables sources
- ICE on e-gasoline has higher PED
  - Requiring a higher amount of renewable energy sources
  - But fuel can be energy carrier of renewable energy sources elsewhere in the world

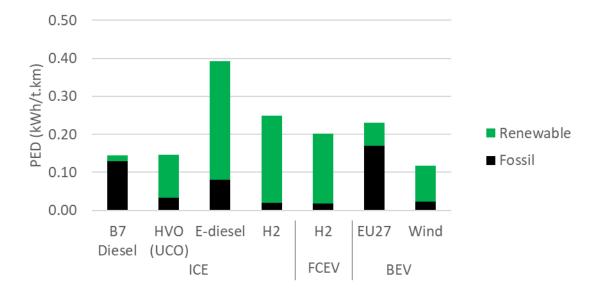




#### All HDV powertrains have similarly low GHG emissions

- When operated on renewable electricity/fuel
- ICE, FCEV and BEV have similar emissions for production of vehicle body
  - Emissions of battery production or H<sub>2</sub> tank are additionally significant for ICE, FCEV and BEV
- Remaining ICE emissions are mainly from fuel supply and combustion
  - Combustion becomes net-zero in case of e-fuel, H<sub>2</sub> or HVO (UCO)
- Remaining FCEV and BEV emissions are from H<sub>2</sub> or electricity supply




#### Key assumptions

- GreenNCAP LCA methodology
- N3 truck IEA Task 46
- Production: 2024 global average
- Fuel/energy varied only in use phase
- Lifetime: 1.2m km, 12 years
- E-diesel from wind & DAC
- HVO from Used Cooking Oil
- $CO_{2eq}$  incl.  $CO_2$ ,  $CH_4$  and  $N_2O$

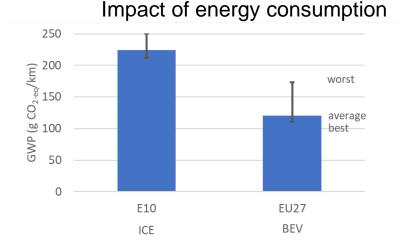


#### **Mixed picture for Primary Energy Demand**

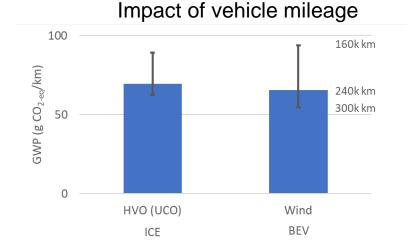
- BEV on wind and ICE on HVO (UCO) have the lowest PED from those powertrain options that are relying on renewables sources
- H<sub>2</sub> ICE and FCEV have higher PED, requiring higher amount of renewable sources
- ICE on e-diesel has highest PED, requiring highest amount of renewable sources
- H<sub>2</sub> and e-diesel can be energy carriers for renewable energy sources elsewhere in the world






#### **Methodologies investigated**

- Levelling concept 1 4
- Additional GHG species (next to CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O)
  - Focus on global warming potential of H<sub>2</sub>
    - Gaseous storage and transportation
    - Liquid storage and transportation
- Allocation of emissions in case of co-products, e.g. biofuels
  - System expansion
  - Energy allocation
- End-of-Life modelling
  - Substitution of primary material
  - Circular Footprint Formula
- Relevance of infrastructure




#### **Need for transparent reporting**

- Most significant methodology impact is from base characteristics
  - Powertrain energy consumption
  - Vehicle mileage (km) definition
  - Others
    - Vehicle weight
    - Powertrain battery capacity
    - Energy/fuel emission factors



Range according to GreenNCAP measurements





#### **Summary and outlook**

#### LCA results

- Only 2 out of many impact categories investigated
- Results show no "Zero-GHG emissions" vehicle, but all powertrains show similarly low GHG emissions when further developing technologies for biofuels, e-fuels, renewable electricity and hydrogen
- ICE on 'HVO from UCO' and BEV on 'wind' have lowest Primary Energy Demand
- ICE on H<sub>2</sub>/e-fuels and FCEV have higher Primary Energy Demand, but can be energy carriers for renewable energy sources elsewhere in the world
- LCA methodologies
  - Transparent reporting is needed for base characteristics of
    - Vehicle
    - Powertrain
    - Energy and fuels





# THANK YOU FOR YOUR ATTENTION

Joachim Demuynck joachim.demuynck@aecc.eu THE DATE International Congress & Exhibition

SAVE

11-12 JUNE

2025



## SIA POWERTRAIN 2025



PORT MARLY - FRANCE



